ON THE BOREL TRANSFORM OF AN ENTIRE FUNCTION OF EXponential TYPE

PREM SINGH

Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ denote the Borel transform of the entire function defined by the series

$$f(z) = \sum_{n=0}^{\infty} a_n z^n.$$

Then let

$$f_{L_1}(z) = \sum_{n=0}^{\infty} (n!) a_n z^n,$$

where $z, z_1 = 1$; similarly, let

$$f_{L_k}(z_k) = \sum_{n=0}^{\infty} (n!) a_n z_k^n,$$

where $z_{k-1}, z_k = 1$. Then all the $f_{L_k}(z_k)$ are entire functions on the x-plane or on the (l/z)-plane, according to the parity of k. A necessary and sufficient condition for $f_{L_k}(z_k)$ to be of finite order has been obtained, as well as some relations between the orders, lower orders, types and λ-types of $f(z)$ and $f_{L_k}(z_k)$.

1. Let

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$

be an entire function of order ρ and lower order λ. It is said to be of exponential type if it is of growth $(1, T)$ i.e., of order $\rho \leq 1$ and if $\rho = 1$, then its type is at the most equal to $T(T < \infty)$. Borel first showed (11, p. 73) that

$$(1.1) f(z) = \sum_{n=0}^{\infty} a_n z^n$$

is an entire function of order 1 and type σ if

$$(1.2) L. f(z) = \sum_{n=0}^{\infty} (n!) a_n z^n$$

(*) Contents were presented to the 30th Conference of the Indian Mathematical Society at Dharwar in 1964.
is convergent for $|z| \geq \sigma$. $L f(z)$, as usual, denotes the Borel transform of $f(z)$. We apply the transformation $z = \frac{1}{z_1}$ to (1.2) and denote

$$\frac{1}{z_1} L f \left(\frac{1}{z_1} \right)$$

by $f_L(z)$. Thus, we get

$$f_L(z) = \sum_{n=0}^{\infty} a_n (n!) z^n$$

where $f(z)$ and $L f(z)$ are in the same plane while $f_L(z)$ is in the new plane which we denote by Z-plane. If the order ϱ of $f(z)$ is less than 1, then we show in this paper that $f_L(z)$ is also an entire function in the Z-plane. This is generalised by applying the Borel transform and inversion transform repeatedly. Thus, if $f_L(z)$, be of order $\varrho(0 < \varrho < 1)$ the application of the Borel transform and the inversion transform $z_i = \frac{1}{z_2}$ to (1.3) yields

$$f_L(z) = \sum_{n=0}^{\infty} a_n (n!) z^n$$

which will be an entire function in the Z-plane. Repeating the argument k times, we can write

$$f_L(z) = \sum_{n=0}^{\infty} a_n (n!) k z^n$$

Evidently, if k is an odd integer the function $f_L(z)$ will be in the Z-plane, while if k is even, it will be in the Z-plane. It will follow that if $f_L(z)$, be of order $\varrho(k-1)$ an entire function of order $\varrho(k-1) < 1$ in one of these planes then $f_L(z)$ is an entire function in the other plane.

In this paper I have investigated a necessary and sufficient condition under which $f_L(z)$ is an entire function of finite order in one of these planes. A number of relations between orders, lower orders, types, and λ-types of $f(z)$ and $f_L(z)$ have also been obtained. The results are given in the form of theorems with remarks.

2. Theorem 1. If

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$

is an entire function of order ϱ, then

$$f_L(z_k) = \sum_{n=0}^{\infty} a_n (n!) k z^n$$

is an entire function of finite order in one of the planes, if and only if, $k \varrho < 1$.

Proof. We have
ON THE BOREL TRANSFORM OF AN ENTIRE FUNCTION OF EXPONENTIAL TYPE

\[
\frac{\log |a_n (n!)^k|^{-1}}{n \log n} \sim \frac{\log |a_n|^{-1}}{n \log n} - \frac{k \log (n!)}{n \log n}.
\]

But from STIRLING’s formula

\[n! \sim n^{n+\frac{1}{2}} e^{-n} \sqrt{2\pi}.
\]

Therefore,

\[
\frac{\log |a_n (n!)^k|^{-1}}{n \log n} \sim \frac{\log |a_n|^{-1}}{n \log n} - \frac{k (n+\frac{1}{2}) \log n}{n \log n} + O\left(\frac{1}{\log n}\right)
\]

\[= \frac{\log |a_n|^{-1}}{n \log n} - k + O(1).
\]

Since ([1], p. 9)

\[(2.1)\]

\[\lim \inf_{n \to \infty} \frac{\log |a_n|^{-1}}{n \log n} = \frac{1}{q},
\]

by making use of (2.1) in the above expression we get

\[(2.1)^\prime\]

\[\lim \inf_{n \to \infty} \frac{\log |a_n (n!)^k|^{-1}}{n \log n} = \frac{1}{q} - k.
\]

This leads us to the conclusion that \(f_{L_k}(z_k)\) is of finite order if \(k \varphi < 1\).

Conversely, let \(f(z)\) be of order \(\varphi\) (where \(k \varphi < 1\)); then, from (2.1)

\[\lim \sup_{n \to \infty} \frac{n \log n}{\log |a_n|^{-1}} = \varphi.
\]

Hence for any \(\varepsilon > 0\), we can find a number \(N(\varepsilon)\) such that

\[\frac{n \log n}{\log |a_n|^{-1}} < (\varphi + \varepsilon) \text{ for all } n > N(\varepsilon)
\]

or

\[|a_n| < n^{\frac{n}{\varphi + \varepsilon}}
\]

or

\[|(n!)^k a_n|^{1/n} < n^{\frac{1}{\varphi + \varepsilon}}.
\]

Therefore

\[\lim_{n \to \infty} |(n!)^k a_n|^{1/n} = 0
\]

and hence the theorem.

Theorem 2. Let

\[f(z) = \sum_{n=0}^{\infty} a_n z^n
\]

be of order \(\varphi\) \((m \varphi < 1)\) and lower order \(\lambda\) and let \(\varphi_k\) and \(\lambda_k\) denote respectively the order and lower order of
\[f_{L_k}(z_k), \quad (k = 1, 2, \ldots, m), \]
then
\[\varrho_k = \frac{\varrho}{1 - k \varrho}. \]

If further,
\[\left| \frac{a_n}{(n+1)k a_{n+1}} \right|, \quad (k = 1, 2, \ldots, m) \]
forms a non-decreasing function of \(n \) for \(n > n_0 \), then
\[\lambda_k = \frac{\lambda}{1 - k \lambda}. \]

Proof. (2.2) follows from (2.1)'). Further, since
\[\left| \frac{a_n}{(n+1)k a_{n+1}} \right|, \quad (k = 1, 2, \ldots, m) \]
forms a non-decreasing function of \(n \) for \(n > n_0 \), in view of the fact ([3], p. 1047), that
\[\log n \]
we get
\[\lim_{n \to \infty} \sup \log \left| \frac{a_n (n+1)^k}{n \log n} \right| = \frac{1}{\lambda_k}. \]

Using Stirling's formula for \(n! \), we easily get
\[\lambda_k = \frac{\lambda}{1 - k \lambda}. \]

Applications. Let
\[f(z) = \sum_{n=0}^{\infty} a_n z^n \]
be of order \(\varrho \), \((m \varrho < 1) \) lower order \(\lambda \) and
\[f_{L_k}(z_k) = \sum_{n=0}^{\infty} a_n (n+1)^k z_k^n \]
be of order \(\varrho_k \) and lower order \(\lambda_k \) respectively and satisfy the hypothesis of theorem 2: then the direct consequences of (2.2) and (2.3) are
\[\varrho < \varrho_1 < \varrho_2 < \ldots < \varrho_{m-1} < \varrho_m \quad \text{if and only if} \quad \varrho \neq 0, \]
\[\lambda < \lambda_1 < \lambda_2 < \ldots < \lambda_{m-1} < \lambda_m \quad \text{if and only if} \quad \lambda \neq 0. \]
ON THE BOREL TRANSFORM OF AN ENTIRE FUNCTION OF EXPONENTIAL TYPE

(2.7) \(q = 0 \) if and only if \(\varphi_k = 0 \) for any \(k, \ 1 \leq k \leq m \),

(2.8) \(\lambda = 0 \) if and only if \(\lambda_k = 0 \) for any \(k, \ 1 \leq k \leq m \),

(2.9) \(q = \lambda \) if and only if \(\varphi_k = \lambda_k \) for any \(k, \ 1 \leq k \leq m \),

i.e. if \(f(z) \) is of regular growth then so is \(f_{L_k}(z_k) \) and vice versa.

Theorem 3. Let

\[f(z) = \sum_{n=0}^{\infty} a_n z^n \]

be an entire function of order \(q, (0 < q < 1) \) and type \(T \). Then

(2.10) \[T_k = \frac{\varphi_k}{\varepsilon_k (q T)^{\theta}} \text{ for } k = 1, 2, \ldots, m \]

where \(\varphi_k \) and \(T_k \) are the order and type, respectively, of \(f_{L_k}(z_k) \).

Proof. Let

\[\psi(n) = \frac{n}{\varepsilon_k} |a_n(n)^{\theta}|^{\frac{\varphi_k}{n}}. \]

Then

\[\log \psi(n) = \log \frac{1}{\varepsilon_k} + \log n + \frac{k \varphi_k}{n} \log (n!) + \frac{\varphi_k}{n} \log |a_n|. \]

Since, from (2.2),

\[\varphi_k = \frac{q}{1 - k q} \text{ and } n! \sim n^{n+\frac{1}{2}} e^{-n} \sqrt{2\pi}, \]

by making use of these in the above expression, we get

\[\log \psi(n) \sim \log \frac{1}{\varepsilon_k} + \frac{\varphi_k}{\varepsilon_k} \log n + \frac{\varphi_k}{\varepsilon_k} \log |a_n|^{q/n}. \]

Now, proceeding to limit, we get

\[T_k = \frac{1}{\varepsilon_k} (q T)^{\theta} \]

in view of the fact ([1], p. 11) that
and hence the theorem is proved.

Let \(f(z) \) be of order \(\rho \) and lower order \(\lambda, (0 \leq \lambda < \rho < \infty) \), then \([1]\),

\[
\lim_{n \to \infty} \sup_{e^{\theta_0}} \frac{1}{n} \left| a_n \right|^{\rho/n} = T
\]

Further, let

\[
\lim \inf_{y \to \infty} \frac{\log M(y)}{y^\rho} = 0.
\]

We call \(t_k \) the \(\lambda \)-type of \(f(z) \). It has also been shown \([1]\) that, if \((0 < \lambda < \infty) \) and

\[
\lim \inf_{n \to \infty} \frac{n}{e^\lambda} \left| a_n \right|^{1/n} = t_k.
\]

The following theorem can be proved on the lines of the proof of theorem 3.

Theorem 4. Let

\[
f(z) = \sum_{n=0}^{\infty} a_n z^n
\]

be an entire function of order \(\rho \), lower order \(\lambda (0 < \lambda < \infty) \) and \(\lambda \)-type \(t_k \). If

\[
\left| \frac{a_n}{(n+1)^k a_{n+1}} \right|, \quad (k = 1, 2, \ldots, m)
\]

forms a non-decreasing function of \(n \) for \(n > n_k \), then

\[
t_k^k = \frac{1}{t_k^k} \left(\lambda_k t_k \right)^{\frac{1}{k}}
\]

for

\[
k = 1, 2, \ldots, m.
\]

where \(\lambda_k \) and \(t_k \) are lower order and \(\lambda \)-type of \(f_{k}(z) \).

Remark. If \(f(z) \) is of regular growth i.e. \(q = \lambda \) then (2.15) is the relation involving the lower types of \(f_{k}(z) \) and \(f(z) \). Otherwise, if \(q \neq \lambda \) it follows from (2.12) that lower type of \(f(z) \) is zero.

Here we give a few applications of theorems 2, 3 and 4.
ON THE BOREL TRANSFORM OF AN ENTIRE FUNCTION OF EXPONENTIAL TYPE

(i) The relation, (2.2), (2.3), (2.10) and (2.15) are recurrence relations. Hence knowing the order and type of any one function out of the $m+1$ functions, one can find out the order and type of any of the other m functions. The same is true for the lower order and λ-type.

(ii)

$$(\theta_k T_k)^{1/\lambda_k} \text{ and } (\lambda_k T_{\lambda_k})^{1/\lambda_k}$$

are invariant quantities for

$$k = 1, 2, \ldots, m.$$

(iii) If

$$\left| \frac{a_n}{(n+1)^k a_{n+1}} \right|, \quad (k = 1, 2, \ldots, m)$$

forms a non-decreasing function of n for $n > n_0$, then $f_{(\lambda_k)}(\gamma_k)$ is of perfectly regular growth if and only if $f(\gamma)$ is of perfectly regular growth.

(iv) If $g \neq \lambda$ then $t_k = 0$ for $k = 1, 2, \ldots, m$, t_k is the lower type of $f_{(\lambda_k)}(\gamma_k)$.

(v) If $m > 0$, then $f(\gamma)$ and $f_{(\lambda_k)}(\gamma_k)$ each have an infinity of zeroes in their respective planes.

(vi) If one considers $(0, \varrho), (1, \varrho), \ldots, (m, \varrho_m)$ as points in the cartesian plane then all lie on the curve

$$y = \frac{\varrho}{1-\gamma \varrho}.$$

Theorem 5. Let

$$f(\gamma) := \sum_{n=0}^{\infty} a_n \gamma^n$$

be an entire function of order, ϱ lower order λ ($0 < \lambda$, $m \varrho < 1$), type $T(T >)$ and λ-type $\lambda, (\lambda > 0)$, then

(2.16)

$$\frac{a_m T_m}{a T} = \prod_{k=1}^{m} (\theta_{k-1} T_{\lambda_{k-1}})^{\lambda_k}$$

and

(2.17)

$$a_m - \varrho = \sum_{k=1}^{m} \theta_{k-1} \theta_k \varrho.$$

If further, $\left| \frac{a_n}{a_{n+1}} \right|$ forms a non-decreasing function of n for $n > n_0$, then

(2.18)

$$\frac{\lambda_m T_{\lambda m}}{\lambda T_{\lambda}} = \prod_{k=1}^{m} (\lambda_{k-1} T_{\lambda_{k-1}})^{\lambda_k}$$

and
(2.19) \[\lambda_m - \lambda = \sum_{k=1}^{m} \lambda_{k-1} \gamma_k \]

where for \(k = 1, \) \(\varrho_0 = \varrho, \) \(\lambda_0 = \lambda, \) \(T_0 = T, \) \(t_{\lambda_0} = t_{\lambda} \) and \(\varrho_k, \lambda_k, T_k \) and \(t_{\lambda_k} \) are the same as in theorems 2, 3 and 4.

Proof. Let us consider the entire functions \(f_{L_{k-1}}(z_{k-1}) \) and \(f_{L_k}(z_k) \) then, on the basis of theorem 3, we can see that

(2.20) \[T_k = \frac{1}{\varrho_m} (\varrho_{k-1} T_{k-1})^{\varrho_k}. \]

Putting \(k = 1, 2, \ldots, m \) in (2.20) and then multiplying the \(m \) equations thus obtained, we get

(2.21) \[T_1 T_2 \ldots T_m = \frac{1}{\varrho_1 \varrho_2 \ldots \varrho_m} (\varrho T)^{\varrho_1} \ldots (\varrho_{m-1} T_{m-1})^{\varrho_m}. \]

Again, considering \(f_{L_{k-1}}(z_{k-1}) \) in place of \(f(z) \) in theorem 2, then (2.2) reduces to

(2.22) \[\varrho_k = \frac{\varrho_{k-1}}{1 - \varrho_{k-1}} \]

\(i.e.\) \(\varrho_k - \varrho_{k-1} = \varrho_k \varrho_{k-1}. \)

Making use of (2.22) in (2.21), we can easily see that

\[\frac{\varrho_m T_m}{\varrho T} = \prod_{k=1}^{m} (\varrho_{k-1} T_{k-1})^{\varrho_k} \]

which is (2.16).

In (2.22), putting \(k = 1, 2, \ldots, m \) and then adding all the equations thus obtained, we get

\[\sum_{k=1}^{m} (\varrho_k - \varrho_{k-1}) = \sum_{k=1}^{m} (\varrho_k \varrho_{k-1}) \]

or

\[\varrho_m - \varrho = \sum_{k=1}^{m} \varrho_k \varrho_{k-1} \]

which is (2.17). Similarly, we can prove (2.18) and (2.19).

3. Now, we obtain relations between the maximum moduli of \(f(z) \) and \(f_{L_k}(z_k) \) and also between their maximum terms and their ranks. We denote by \(M(\gamma) \) the maximum modulus of \(f(z) \) for \(|z| = \gamma, \) and by \(M(\gamma, f_{L_k}) \) the maximum modulus of \(f_{L_k}(z_k), \) taking \(|z_k| = |z| = \gamma. \) When \(k \) is even we have \(z = z_k \) but when \(k \) is odd we have \(z = 1/z_k. \)
In the latter case, having chosen a value γ for $|z|$, we look for the point in the Z-plane such that $|zk| = \gamma$. Corresponding to this point zk the point in the z-plane will have the modulus $1/\gamma$. Similar remarks apply also for the maximum terms and for their ranks in the following theorems.

Theorem 6. Let

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$

be an entire function of order $\rho (0 \leq \rho < 1)$ and lower order λ. If

$$\left| \frac{a_n}{(n+1)^m a_{n+1}} \right|$$

forms a non-decreasing function of for $n > n_k$, then for any $\varepsilon > 0$.

$$\frac{1-\rho+\varepsilon}{1-k\rho} \left\{ \log M(\gamma) \right\}^{1-k\rho} < \log M(\gamma, f_{L_k}) < \frac{\varepsilon-\lambda+\varepsilon}{1-k\rho} \left\{ \log M(\gamma) \right\}^{1-k\rho}$$

for $\gamma < \gamma_k(\varepsilon)$ and $k = 1, 2, \ldots, m$.

Proof. It is known (\cite{1}, p. 9) that

$$\lim_{\gamma \to \infty} \sup \log \log M(\gamma) = e \lambda.$$

Therefore, for any $\varepsilon' > 0$, we can find a positive number $\gamma(\varepsilon')$ such that

$$\gamma^{\lambda-\varepsilon'} < \log M(\gamma) < \gamma^{\rho+\varepsilon'}.$$ (3.1)

Similarly, for the integral function $f_{L_k}(zk)$, we have

$$\gamma^{\lambda-k\rho+\varepsilon_k} < \log M(\gamma, f_{L_k}) < \gamma^{\rho-k\rho+\varepsilon_k}$$

for $\gamma > \gamma_k(\varepsilon_k)$

or

$$\gamma^{\lambda-\rho-k\rho} \left\{ \log M(\gamma) \right\}^{1-k\rho} < \log M(\gamma, f_{L_k}) < \gamma^{\rho-k\rho} \left\{ \log M(\gamma) \right\}^{1-k\rho}$$

where

$$\varepsilon_k \geq \left(\varepsilon_k + \frac{1-k\rho}{\varepsilon'} \right).$$

Making use of (3.1) in the above inequality, we get

$$\gamma^{\lambda-k\rho} \left\{ \log M(\gamma) \right\}^{1-k\rho} < \log M(\gamma, f_{L_k}) < \gamma^{\rho-k\rho} \left\{ \log M(\gamma) \right\}^{1-k\rho}.$$
where

$$\gamma > \gamma_0 (e) = \max_{1 \leq k \leq m} \{ \gamma_0 (e'), \gamma_k (e_k) \}$$

and hence the theorem.

Theorem 7. Let

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$

be an entire function of order \(e \) \((0 \leq e < 1)\), lower order \(k \) and let

$$v (\gamma, f), v (\gamma, f_{L_k}), v (\gamma, f^{(s)}) \text{ and } v (\gamma, f^{(s)}_{L_k})$$

denote respectively the ranks of the maximum terms of

$$f(z), f_{L_k} (z)$$

and their \(s \)-th derivatives

$$f^{(s)} (z) \text{ and } f^{(s)}_{L_k} (z_k).$$

If

$$\left| \frac{a_n}{(n+1)^m a_{n+1}} \right|$$

forms a non-decreasing function of \(n \) for \(n > n_0 \), then for any \(e > 0 \), we have

$$\frac{\lambda - e - \varepsilon}{1 - k \varepsilon} + \frac{1}{(1 - k \varepsilon) s \log \gamma} \int_{\gamma_0}^{\gamma} \frac{\varphi (x, s)}{x} \, dx < \frac{1}{s \log \gamma} \int_{\gamma_0}^{\gamma} \frac{\varphi_k (x, s)}{x} \, dx$$

for \(\gamma > \gamma_0 \) and \(k = 1, 2, \ldots, m \), where

$$\varphi (\gamma, s) = v (\gamma, f^{(s)}) - v (\gamma, f),$$

$$\varphi_k (\gamma, s) = v (\gamma, f^{(s)}_{L_k}) - v (\gamma, f^{(s)}_{L_k}).$$

Proof. It is known ([4], p. 276) that

$$\lim_{\gamma \to \infty} \sup_{\gamma} \inf_{x} \frac{1}{s \log \gamma} \int_{\gamma_0}^{\gamma} \frac{\varphi (x, s)}{x} \, dx = \frac{e}{\lambda}.$$

Therefore, proceeding on the same lines as in theorem 6 we easily obtain the result.
Theorem 5. Let

\[f(z) = \sum_{n=0}^{\infty} a_n z^n \]

be an entire function of order \(\sigma (0 \leq m \sigma < 1) \), lower order \(\lambda \) and let

\[\mu (\gamma, f), \mu (\gamma, f_{L_k}), \mu (\gamma, f^{(e)}), \mu (\gamma, f^{(e)}_{L_k}) \]

denote respectively the maximum terms of

\[f(z), f_{L_k}(z), f^{(e)}(z) \text{ and } f^{(e)}_{L_k}(z). \]

If

\[\frac{a_n}{(n+1)^m a_{n+1}} \]

is a non-decreasing function of \(n \) for \(n > n_0 \), then for any \(\varepsilon > 0 \),

\[\left[\frac{\mu (\gamma, f^{(e)}_{L_k})}{\mu (\gamma, f_{L_k})} \right]^{1/(1-k \rho)} < \gamma \left[\frac{\mu (\gamma, f^{(e)})}{\mu (\gamma, f)} \right] < \left[\frac{\mu (\gamma, f^{(e)})}{\mu (\gamma, f)} \right]^{1/(1-k \rho)} \]

for

\[\gamma > \gamma_0 (\varepsilon) \text{ and } k = 1, 2, \ldots, m. \]

Proof. It is known ([5], p. 107) that

\[\lim_{\gamma \to 0} \sup \frac{\log \gamma \left\{ \frac{\mu (\gamma, f^{(e)})}{\mu (\gamma, f)} \right\}^{1/e}}{\log \gamma} = e. \]

Again, proceeding on the same lines as in theorem 6 we get the result (').

REFERENCE

Indian Institute of Technology, Kanpur, India. (Manuscript received November 25, 1966)

\((\cdot) \text{ I am grateful to Prof. R. S. L. Srivastava for his kind guidance in the preparation of this paper.} \)
ÖZET

\(Lf(z) = \sum_{n=0}^{\infty} (n!) a_n z^n, f(z) = \sum_{n=0}^{\infty} a_n z^n \) seri açılımı ile verilen tam fonksiyonun

Bönen dönüştürülmişini gösterin. Bu takdirde, \(z \cdot z_1 = 1 \) olmak üzere,

\[f_{L_1}(z_1) = \sum_{n=0}^{\infty} (n!) a_n z_1^n \]

vaz edilsin ve buna benzer tarzda, \(z_k-1 \cdot z_k = 1 \) olmak üzere,

\[f_{L_k}(z_k) = \sum_{n=0}^{\infty} (n!)^k a_n z_k^n \]

tanımlansın, \(f_{L_k}(z_k) \) fonksiyonları, \(k \) sayısıının çift veya tek olmasına göre, \(z \) veya

\(1/z \) düzleminde tam fonksiyonlardır. Bu yüzden bu fonksiyonların sonlu mertebeden olmaları için bir gerek ve yeter şart oldu edilmiş, ayrıca \(f_{L_k}(z_k) \) ile \(f(z) \) fonksiyon-

ların mertebeilleri, alt mertebeilleri, tipleri ve \(\lambda \)-tipleri arasında bazı bağıntılar

işpat edilmiştir.