THE GEOMETRIC INTERPRETATION OF THE SECTIONAL CURVATURE OF A FINSLER SPACE

S. DRAGOMIR - B. CASCARO

Given a generalized Finsler space \(M \) the manifold \(V(M) \rightarrow T(M) \rightarrow 0 \) of all tangent directions on \(M \) admits a naturally induced pseudo-Riemannian structure. Also, there is a linear connection on \(V(M) \) corresponding to the Miron connection \([\theta]\) of \(M \); in terms of the associated exponential formalism on \(V(M) \) the following geometric interpretation of the vertical sectional curvature \(s \) occurs: if \(p \) is a Finslerian 2-plane on \(M \) then \(s(p) \) approximates the difference between the length of a circumference centred at the origin in \(p \) and the length of its exponential projection on \(V(M) \).

1. NOTATIONS, CONVENTIONS AND BASIC FORMULAE

Let \(M \) be an \(n \)-dimensional \(C^\infty \)-differentiable manifold and \(\pi : V(M) \rightarrow M \) the natural projection, where \(V(M) = T(M) - 0 \), while \(T(M) \rightarrow M \) stands for the tangent bundle over \(M \). Let \(\pi^{-1} T(M) \rightarrow V(M) \) be the pullback bundle of \(T(M) \) by \(\pi \). This is a real differentiable vector bundle of rank \(n \).

A generalized metrical Finsler structure on \(M \) is a non-degenerated symmetric Finsler \((0,2)\)-tensor field \(g, g \in \Gamma(V(M), \pi^{-1} T^*(M) \otimes \pi^{-1} T^*(M)) \). Throughout, if \(E \rightarrow N \) is a given vector bundle over the manifold \(N \), then \(\Gamma(N, E) \) denotes the module (over the ring \(C^\infty(N) \) of all real valued smooth functions on \(N \)) of all smooth cross-sections in \(E \). A pair \((M, g)\) is a generalized Finsler space, cf. R.MIRON, [9]. A non-linear connection on \(V(M) \) is a differential system \(N : u \rightarrow T_u(V(M)) \) on \(V(M) \) such that:

\[
T_u(V(M)) = N_u \oplus \ker (d_u \pi)
\]

for each tangent direction \(u \in V(M) \) on \(M \). See W.BARTHEL, [1]. Consequently \((V(M), N)\) turns to be a non-holonomic space, in the sense of G.VRANCEANU, [19].

Next we consider the bundle epimorphism \(L \) given by \(L : T(V(M)) \rightarrow \pi^{-1} T(M) \), \(L_u \tilde{X} = (u, (d_u \pi) \tilde{X}) \), for any \(u \in V(M) \), \(\tilde{X} \in T_u(V(M)) \). Note that \(\ker(L) = \ker(d \pi) \); thus, if some non-linear connection \(N \) on \(V(M) \) is fixed, each \(L_u : N_u \rightarrow \pi_u^{-1} T(M) \) is a \(IR \)-linear isomorphism, where \(\pi_u^{-1} T(M) = \{u\} \times T_{n(u)}(M) \) denotes the fibre over \(u \) in \(\pi^{-1} T(M) \). We set \(\beta_u = (L|_{N_u})^{-1}, \ u \in V(M) \). The resulting bundle
S. DRAGOMIR - B. CASCIARO

isomorphism \(\beta : \pi^{-1} T(M) \to N \) is referred to as the horizontal lift associated with \(N \).

Let \((U, x')\) be a local coordinate system on \(M \) and let \((\pi^{-1}(U), x', y^i)\) be the induced local coordinates on \(V(M) \). Locally, cf. [1], a non-linear connection \(N \) on \(V(M) \) is given by a Pfaffian system:

\[
\delta y^i \equiv dy^i + N^i_j(x, y) \, dx^j = 0. \tag{1.2}
\]

To state this in modern language, let \(X_i : \pi^{-1}(U) \to \pi^{-1} T(M), \ X_i(u) = \left(u, \frac{\partial}{\partial x^i} \right) \right|_{\pi(u)}, \) for any \(u \in \pi^{-1}(U) \). Next, let us set \(\delta_i = \beta X_i, 1 \leq i \leq n \). Let us put

\[
\partial_i = \frac{\partial}{\partial x^i}, \quad \dot{\partial}_i = \frac{\partial}{\partial y^i} \quad \text{for simplicity. Then there exists a uniquely determined system of } n^2 \text{ smooth functions } N^i_j \in C^\infty(\pi^{-1}(U)) \text{ such that } \delta_i = \partial_i - N^i_j \dot{\partial}_j \text{ and } N^i_j \text{ are usually termed the coefficients of the non-linear connection } N \text{ with respect to } (U, x'). \text{ Now (1.2) means that, for any } u \in \pi^{-1}(U), N_u \text{ is spanned by } \{ \delta_i \}_1 \leq i \leq n \text{ over the reals.}
\]

The vertical lift is the bundle isomorphism \(\gamma \) defined by \(\gamma : \pi^{-1} T(M) \to \text{Ker}(d\pi), \gamma(X_i) = \dot{\partial}_i \). The definition of \(\gamma \) does not depend upon the choice of local coordinates.

Let \(P_{1,u}, P_{2,u} \) be the natural projections associated with the direct sum decomposition (1.1). We shall need the bundle morphisms:

\[
P_3 = \gamma \circ L, \quad P_4 = \beta \circ G \tag{1.3}
\]

where \(G : T(V(M)) \to \pi^{-1} T(M) \) denotes the Dombrowski mapping, i.e. \(G_u \hat{X} = \gamma_u^{-1} \bar{X}_u \), where \(\bar{X}_u = P_{2,u} \hat{X}, \hat{X} \in T_u(V(M)), u \in V(M) \). Cf. P. DOMBROWSKI, [1].

Let \((M, g)\) be a generalized Finsler space. Each fibre \(\pi_u^{-1}(T(M), u \in V(M)) \) of the pullback bundle carries a semi-definite inner product \(g_u \) and \(u \to g \) is smooth. Therefore \(\pi^{-1} T(M) \to V(M) \) turns into a pseudo-Riemannian vector bundle. Moreover \(V(M) \) admits the pseudo-Riemannian metric:

\[
\tilde{g}(\tilde{X}, \tilde{Y}) = g(L \tilde{X}, L \tilde{Y}) + g(G \tilde{X}, G \tilde{Y}) \tag{1.4}
\]

for any \(\tilde{X}, \tilde{Y} \in \Gamma(V(M), T(V(M))) \) and some fixed non-linear connection \(N \) on \(V(M) \) (with respect to which the Dombrowski map \(G \) is derived). If \(g \) is positive-definite then \((V(M), \tilde{g}) \) turns to be a \(2n \)-dimensional smooth Riemannian manifold.

Let \(\nabla \) be a connection in the pullback bundle \(\pi^{-1} T(M) \) of a given generalized Finsler space \((M, g)\). In contrast with the general situation of a connection in an
arbitrary vector bundle, given a non-linear connection N on $V(M)$, two concepts of torsion might be associated with ∇:

$$\tilde{T} (\tilde{X}, \tilde{Y}) = \nabla_{\tilde{X}} \tilde{Y} - \nabla_{\tilde{Y}} \tilde{X} - \tilde{L}[\tilde{X}, \tilde{Y}]$$

$$\tilde{T}_1 (\tilde{X}, \tilde{Y}) = \nabla_{\tilde{X}} G \tilde{Y} - \nabla_{\tilde{Y}} G \tilde{X} - G[\tilde{X}, \tilde{Y}]$$

(1.5)

for any tangent vector fields \tilde{X}, \tilde{Y} on $V(M)$. Nevertheless, note that only the definition of \tilde{T}_1 depends on the choice of N. Next we consider:

$$T(X, Y) = \tilde{T}(\beta X, \beta Y), \quad S^1(X, Y) = \tilde{T}_1(\gamma X, \gamma Y)$$

(1.6)

for any $X, Y \in \Gamma(V(M), \pi^{-1} T(M))$. We shall need the following result, cf. [7]:

Theorem 1.1. There exists a unique connection ∇ in the pullback bundle $\pi^{-1} T(M)$ of the generalized Finsler space (M, g, N) such that the following axioms are satisfied:

$$\nabla g = 0$$

(1.7)

$$T = 0, \quad S^1 = 0.$$

(1.8)

Moreover ∇ is expressed by:

$$2g(\nabla_\beta X Y, Z) = g(Z, L[\beta X, \beta Y]) - g(X, L[\beta Y, \beta Z]) -$$

$$- g(Y, [\beta X, \beta Z]) - (\beta X)(g(Y, Z)) -$$

$$- (\beta Y)(g(Z, X)) + (\beta Z)(g(X, Y))$$

(1.9)

$$2g(\nabla_\gamma X Y, Z) = g(Z, G[\gamma X, \gamma Y]) - g(X, G[\gamma Y, \gamma Z]) -$$

$$- g(Y, G[\gamma X, \gamma Z]) - (\gamma X)(g(Y, Z)) -$$

$$- (\gamma Y)(g(Z, X)) + (\gamma Z)(g(X, Y))$$

(1.10)

for any $X, Y, Z \in \Gamma(V(M), \pi^{-1} T(M))$.

Next we consider the linear connection $\tilde{\nabla}$ on $V(M)$ defined by:

$$\tilde{\nabla}_X \tilde{Y} = \beta \nabla_{\beta X} L \tilde{Y} + \gamma \nabla_{\gamma X} G \tilde{Y}$$

(1.11)

where ∇ is the connection in $\pi^{-1} T(M)$ furnished by Theorem 1.1. The following result holds:

Theorem 1.2. Let (M, g) be a generalized Finsler space carrying the non-linear connection N. Then the linear connection (1.11) is subject to:

$$\tilde{\nabla} \tilde{g} = 0.$$

(1.12)

$$\tilde{\nabla} P_j = 0, \quad j \in \{1, 2, 3, 4\}.$$

(1.13)

If \tilde{A} is the torsion 2-form of $\tilde{\nabla}$ then:
\[\tilde{A}(\tilde{X}, \tilde{Y}) = \beta \tilde{T}(\tilde{X}, \tilde{Y}) + \gamma \tilde{T}_1(\tilde{X}, \tilde{Y}) \] (2.14)

for any tangent vector fields \(\tilde{X}, \tilde{Y} \) on \(V(M) \).

The proof of Theorem 1.2, being straightforward, is left as an exercise to the reader.

2. EXPONENTIAL FORMALISM ON A GENERALIZED FINSLER SPACE

Let \((M, g)\) be a generalized Finsler space carrying the non-linear connection \(N \). Consider the linear connection (1.11) on the pseudo-Riemannian manifold \((V(M), \tilde{g})\). Let \(u_0 \in V(M) \) be a fixed tangent direction on \(M \). Let:

\[\exp_{u_0} : W_\tilde{0} \rightarrow W_{u_0} \] (2.1)

be the exponential mapping associated with the linear connection (1.11), where \(W_\tilde{0} \) and \(W_{u_0} \) are suitable chosen open neighborhoods of the zero tangent vector \(\tilde{0} \) in \(T_{u_0}(V(M)) \), and of \(u_0 \) in \(V(M) \), respectively. On the other hand, for any Finsler space \(M \), there is an exponential formalism associated with the Cartan connection of \(M \), such as developed in B.T.HASSAN, [7]. This might be related to (2.1) as follows: Let \(E : T(M) \rightarrow [0, +\infty) \) be a fixed Finsler energy on \(M \). If the generalized Finsler metric \(g \) is positive-definite and its (local) components are subject to \(g_{ij} = \frac{1}{2} \partial_i \partial_j E \), then \((M, g)\) is a Finsler space. Moreover suppose that \(N \) is (locally) given by:

\[N_j^i = \frac{1}{2} \partial_j \gamma_{00}^i \] (2.2)

where:

\[\gamma_{00}^i = \dot{y}^i \dot{y}^j \dot{y}^k , \quad \gamma_{jk}^i = g^{ih} jk , h | \]

\[| jk , h | = \frac{1}{2} (\partial_k g_{jh} + \partial_j g_{kh} - \partial_h g_{jk}) . \]

Then the Miron connection (1.9)-(1.10) coincides with the unique regular Cartan connection of \((M, E)\), such as introduced in E.CARTAN, [7].

Let \(x_0 = \pi(u_0), x_0 \in M \). Put next \(L(u) = E(u)^{1/2} \), for any \(u \in V(M) \). We shall use the following, [7]:

Theorem 2.1. Let \((M, E)\) be a Finsler space and \(\nabla \) its Cartan connection. Then there exists \(\varepsilon > 0 \) such that the following second order ordinary differential system:
THE GEOMETRIC INTERPRETATION

\[\frac{\partial C}{\partial t} L \frac{dC}{dt} = 0 \] (2.3)

admits a unique solution \(C = C_{x_0}, C_{x_0} : (-2, 2) \rightarrow M \) satisfying the initial conditions \(C_{X_0}(0) = x_0, \) and \(\frac{dC_{X_0}}{dt}(0) = X_0, X_0 \in T_{X_0}(M), \) provided that \(L(X_0) < \varepsilon. \)

To make the notation in (2.3) clear, we mention that given a regular curve \(C : I \rightarrow M, \) for some open interval \(I \subset IR, \) one denotes by \(\bar{C} : I \rightarrow V(M) \) the natural lift of \(C, \) i.e. \(\bar{C}(t) = \frac{dC}{dt}(t), t \in I. \) We shall need the following:

Theorem 2.2. The natural lift \(\bar{C} \) of any solution \(C \) of (2.3), i.e. of any geodesic of the Finsler space \((M, E), \) is a horizontal auto-parallel curve of the linear connection (1.11). That is:

\[\bar{\nabla} \frac{d\bar{C}}{dt} = 0 \] (2.4)

\[\frac{d\bar{C}}{dt}(t) \in N_{\bar{C}(t)} \] (2.5)

for any value of the parameter \(t. \)

See [4]. There is \(\delta > 0 \) such that the open set:

\[\{ \bar{X} \in T_{u_0}(V(M)) \mid \tilde{g}_{u_0} (\bar{X}, \bar{X})^{1/2} < \delta \} \]

is contained in \(W_0. \) If \(u_0 \in V(M) \) is chosen such that \(L(u_0) < \varepsilon, \) then according to Theorem 2.1., there is a unique solution \(u_{a_0} : (-2, 2) \rightarrow M \) of (2.3) with initial data \((x_0, u_0).\) We may put:

\[\exp_{x_0} u_0 = C_{u_0}(1). \] (2.6)

By our Theorem 2.2, the natural lift \(\bar{C}_{u_0} \) of \(C_{u_0} \) is a solution of (2.4). Note also that \(\bar{C}_{u_0}(0) = u_0. \) Next we set

\[\bar{X}_0 = \frac{d\bar{C}_{u_0}}{dt}(0), \bar{X}_0 \in T_{u_0}(V(M)). \]

Let \(p = \min(\varepsilon, \delta) > 0. \) We establish firstly the following:

Lemma 2.1. If \(L(u_0) < p \) then \(\bar{X}_0 \in W_0. \)

Proof. It is enough to prove that \(\tilde{g}_{u_0} (\bar{X}_0, \bar{X}_0)^{1/2} < p. \) Let \(v \) be the Liouville vector field on \(M, \) i.e. \(v \in \Gamma(V(M)), \pi^{-1} T(M), v(u) = (u, u), u \in V(M). \) We use now the property (2.5) of \(\bar{C}_{u_0} \) and the definition (1.4). By the classical Euler theorem on positively homogeneous functions one has:
\[\tilde{g}_{u_0}(\tilde{X}_0, \tilde{X}_0) = g_{u_0} \left(\frac{d C_{u_0}}{dt}(0), \frac{d C_{u_0}}{dt}(0) \right) = g_{u_0}(v(0), v(0)) = E(u_0) \]

and the proof is complete.

By our Lemma 2.1., if \(L(u_0) < \rho \) then:
\[\exp_{u_0} \tilde{X}_0 = \tilde{C}_{u_0}(1). \] (2.7)

Therefore, the link between the exponentials (2.6) - (2.7) is expressed by:
\[\pi(\exp_{u_0} \tilde{X}_0) = \exp_{u_0} u_0. \] (2.8)

3. SECTIONAL CURVATURE OF GENERALIZED FINSLER SPACES

Let \((M, g)\) be a generalized Finsler space. Suppose from now on that \(g \) is positive-definite. The 2-dimensional linear subspaces of the fibres of the pullback bundle \(\pi^{-1}T(M) \) give rise to a bundle \(GF_2(M) \) over \(V(M) \), with projection \(p: GF_2(M) \to V(M) \) and standard fibre the Grassman manifold \(G_{2,n} \) of all 2-planes in \(IR^n \). The synthetic object \(GF_2(M) \) over \(V(M) \) is called the Finsler-Grassmann bundle of \(M \). Let \(u_0 \in V(M) \) be a fixed tangent direction on \(M \) and \(p \in GF_2(M), p(p) = u_0 \). Let \(N \) be a non-linear connection on \(V(M) \) and \(\beta \) the corresponding horizontal lift. Let \(\tilde{p} : G_2(V(M)) \to V(M) \) be the Grassmann bundle of all 2-planes tangent to \(V(M) \). We set \(\gamma(p) = \{ \gamma X | X \in p \} \) and \(\beta(p) = \{ \beta X | X \in p \} \). Then \(\gamma(p), \beta(p) \in G_2(V(M)) \). Moreover, if \(\{ X, Y \} \) is an orthonormal basis of \(p \) (with respect to \(g_{u_0} \)) then \(\{ \gamma X, \gamma Y \} \) are basis in \(\gamma(p) \), \(\beta X, \beta Y \) respectively (orthonormal with respect to the inner product \(g_{u_0} \)). Let \(\tilde{B} \) be the curvature 2-form of the linear connection (1.11). As a consequence of (1.12) the (0,4)-tensor field \(\tilde{B}(\tilde{X}, \tilde{Y}, \tilde{Z}, \tilde{W}) = \tilde{g}(\tilde{B}(\tilde{Z}, \tilde{W}) \tilde{Y}, \tilde{X}) \) verifies:
\[
\tilde{B}(\tilde{X}, \tilde{Y}, \tilde{Z}, \tilde{W}) + \tilde{B}(\tilde{X}, \tilde{Y}, \tilde{W}, \tilde{Z}) = 0
\]
\[
\tilde{B}(\tilde{X}, \tilde{Y}, \tilde{Z}, \tilde{W}) + \tilde{B}(\tilde{Y}, \tilde{X}, \tilde{Z}, \tilde{W}) = 0.
\] (3.1)

Since (3.1) holds, we may consider the (well-defined) map \(b : G_2(V(M)) \to IR \), \(b(p) = \tilde{B}_u(\tilde{X}_0, \tilde{Y}_0, \tilde{X}_0, \tilde{Y}_0), p \in G_2(V(M)) \), for any orthonormal (with respect to \(g_{u_0} \)) linear basis \(\{ \tilde{X}_0, \tilde{Y}_0 \} \) in \(\tilde{p}, u = \tilde{p}(\tilde{p}). \) Next we define \(r, s : GF_2(M) \to IR \), by \(r(p) = b(\beta(p)), s(p) = b(\gamma(p)), p \in GF_2(M) \). The maps \(r, s \) are the horizontal (resp. vertical) sectional curvatures of the Finsler space \((M, E)\), such as
THE GEOMETRIC INTERPRETATION

91

introduced in [5], provided that \(g \) is given by \(g_{ij} = \frac{1}{2} \partial_i \partial_j E \). Indeed, let \(\tilde{R} \)
be the curvature 2-form of the Miron connection (1.9) - (1.10). Consider the tensor fields \(\tilde{R}(X, Y, \tilde{Z}, \tilde{W}) = g(\tilde{R}(\tilde{Z}, \tilde{W}) Y, X) \), and \(R(X, Y, Z, W) = R(X, Y, \beta Z, \beta W) \), \(S(X, Y, Z, W) = \tilde{R}(X, Y, \gamma Z, \gamma W) \). Then the following identities hold:

\[
\begin{align*}
\tilde{B}(\tilde{X}, \tilde{Y}) \tilde{Z} &= \tilde{\beta} \tilde{R}(\tilde{X}, \tilde{Y}) L \tilde{Z} + \gamma \tilde{R}(\tilde{X}, \tilde{Y}) G \tilde{Z} \\
\tilde{B}(\tilde{X}, \tilde{Y}, \tilde{Z}, \tilde{W}) &= \tilde{R}(L \tilde{X}, L \tilde{Y}, \tilde{Z}, \tilde{W}) + \tilde{R}(G \tilde{X}, G \tilde{Y}, \tilde{Z}, \tilde{W})
\end{align*}
\]

and consequently \(r(p) = R(X, Y, X, Y) \), \(s(p) = S(X, Y, X, Y) \), for \(p \in GF_{2}(M) \)
and for any orthonormal linear basis \(\{X, Y\} \) in \(p \).

4. MAIN RESULT

Let \(p_0 \in GF_{2}(M) \), \(u_0 = p(p_0) \), be fixed. Let \(\{X, Y\} \) be an orthonormal basis
in \(p_0 \). Consider the curve \(\eta : [0, 2\pi] \to p_0 \) defined by \(\eta(0) = (\cos \theta) X + \\
(\sin \theta) Y, 0 \leq \theta \leq 2\pi \). For simplicity we set \(p_0^h = \beta(p_0) \), \(p_0^\gamma = \gamma(p_0) \); therefore \(\theta \mapsto \beta(\eta(\theta)) \) (resp. \(\theta \mapsto \gamma(\eta(\theta)) \)) is a curve in \(p_0^h \) (resp. in \(p_0^\gamma \)). With
standard arguments) there exists a number \(r > 0 \) such that:

\[
\begin{align*}
t \beta \eta(\theta) &\in W_0 \cap N_{u_0} \\
t \gamma \eta(\theta) &\in W_0 \cap \text{Ker}(d_{u_0} \pi)
\end{align*}
\]

for any \(0 \leq t \leq r \). Therefore, the following curves are well defined, i.e.
\(C_0^h, C_0^\gamma : [0, r] \to V(M) \) given by:

\[
C_0^h(t) = \exp_{u_0} t \beta \eta(\theta), \quad C_0^\gamma(t) = \exp_{u_0} t \gamma \eta(\theta)
\]

for any \(0 \leq \theta \leq 2\pi \), \(0 \leq t \leq r \). Moreover we consider the curves \(C^h, C^\gamma : [0, 2\pi] \to V(M) \) given by:

\[
C^h(\theta) = C_0^h(\theta), \quad C^\gamma(\theta) = C_0^\gamma(\theta).
\]

Let \(L(C^h), L(C^\gamma) \) be respectively given by

\[
L(C^h) = \int_{0}^{2\pi} \tilde{g}_{C(\theta)} \left(\frac{d C^h}{d \theta} (\theta), \frac{d C^h}{d \theta} (\theta) \right) d \theta,
\]

\[
L(C^\gamma) = \int_{0}^{2\pi} \tilde{g}_{C(\theta)} \left(\frac{d C^\gamma}{d \theta} (\theta), \frac{d C^\gamma}{d \theta} (\theta) \right) d \theta.
\]

We may formulate the following:
Theorem 4.1. Let \((M, g)\) be a generalized Finsler space carrying the nonlinear connection \(N\). Let \(s : GF_2(M) \rightarrow IR\) be the vertical sectional curvature associated with the Miron connection determined by the pair \((g, N)\). Then:

\[
s(p_0) = \lim_{r \to 0} \frac{3}{\pi r^3} \{ I(C^v) - 2 \pi r \}
\]

(4.4)

for each \(p_0 \in GF_2(M)\), where \(C^v\) is given by (4.2).

It is an open problem to establish a geometrical interpretation similar to (4.4) for the horizontal sectional curvature \(r\) of \((M, g, N)\).

5. JACOBI FIELDS ON GENERALIZED FINSLER SPACES

Let us put \(\alpha^r(0, t) = C^r_0(t)\), \(0 \leq 0 \leq 2\pi\), \(0 \leq t \leq r\), with the notations in §4. By (4.2) it follows that the family \(\{C^r_0\}_{0 \leq 0 \leq 2\pi}\) consists of autoparallel curves of \(\tilde{V}\) with the initial data \((u_0, \gamma W(0))\). Clearly \(\alpha^r\) is a variation of \(C^r_0\), in the sense of \([6, p.63]\), vol.II. Let then \(J^r\) be the infinitesimal variation induced by the variation \(\alpha^r\). We need to recall that \(J^r\) is a vector field along the 2-parameter surface \(\alpha^r\) in \(V(M)\) given by:

\[
J^r(u^r(\theta, t)) = J^r_0(t)
J^r_0(t) = \frac{\partial \alpha^r}{\partial \theta}(\theta, t)

\frac{\partial \alpha^r}{\partial \theta}(\theta, t) = (d_0 a_0) \frac{d}{d\theta} \bigg|_0

\alpha^r_t(\theta) = \alpha^r(\theta, t).
\]

Note that:

\[
J^r_0(0) = 0 , \quad 0 \leq 0 \leq 2\pi.
\]

(5.2)

Let \(u_0 \in V(M)\) be fixed. Put for brevity \(W^r_0 = W_0 \cap \text{Ker}(d_u \pi)\). Consider \(\tilde{X}_0 \in W^r_0\) and the curve \(\gamma_0\) in \(V(M)\) defined by:

\[
\gamma_0(t) = \exp_{u_0} t \tilde{X}_0
\]

(5.3)

for small values of the parameter \(t\). Next we consider the first order ordinary differential system:

\[
\tilde{V}_{d_{\alpha}} \tilde{Z} = 0
\]

(5.4)
where \(\sigma : [0, 1] \to V(M) \) is a given differentiable curve in \(V(M) \). Let then \(T_{\sigma,t}^* : T_{\sigma(0)}(V(M)) \to T_{\sigma(t)}(V(M)) \) be the parallel displacement operator along \(\sigma \), associated with (5.4). That is, if \(\tilde{Z} \) is the unique solution of (5.4) with initial data \(\tilde{Z}(0) = \tilde{Z}_0 \) then \(T_{\sigma,t}^*(\tilde{Z}_0) = \tilde{Z}(t) \), for any \(\tilde{Z}_0 \in T_{\sigma(0)}(V(M)) \). We establish:

Lemma 5.1. For an arbitrary smooth curve \(\sigma : [0, 1] \to V(M) \) one has:

\[
P_2 \circ T_{\sigma,t} = T_{\sigma,t}^* \circ P_2
\]

for any \(0 \leq t \leq 1 \).

Proof. Let \(\vec{X} \in \mathcal{T}_\sigma(V(M)) \) and \(\tilde{Z} \) the unique solution of (5.4) with \(\tilde{Z}(0) = P_2 \vec{X} \). Then \(0 = P_2 \frac{d}{dt} \tilde{Z} = \frac{d}{dt} P_2 \tilde{Z} \), by our (1.13), i.e. \(P_2 \tilde{Z} \) is a solution of (5.4). Moreover \((P_2 \tilde{Z})'(0) = P_2 P_2 \vec{X} = \tilde{Z}(0) \). Consequently \(P_2 \tilde{Z} = \tilde{Z} \), and (5.5) holds, Q.E.D.

Let us replace now \(\sigma \) in (5.4) by the curve (5.3). By the very definition of \(\gamma_0 \), its tangent gives a solution of (5.4) \(\left(\text{since } \gamma_0 \text{ is an auto-parallel curve of the linear connection (1.11)} \right) \) and \(\frac{d}{dt} \gamma_0(0) = \vec{X}_0 \). Applying Lemma 5.1. one has:

\[
\frac{d}{dt} \gamma_0(t) = T_{\gamma_0,t}^*(\vec{X}_0) = T_{\gamma_0,t}^*(P_2 \vec{X}_0) = P_2 T_{\gamma_0,t}^*(\vec{X}_0) = P_2 \frac{d}{dt} \gamma_0(t).
\]

It follows that (5.3) is a vertical curve provided that \(\vec{X}_0 \) is vertical. Thus:

\[
(d_{\gamma_0(0)} \pi) \frac{d}{dt} \gamma_0(t) = 0
\]

or \(\pi \circ \gamma_0 = \text{constant} \), i.e. the curve (5.3) lies entirely in the fibre \(V_{x_0} = \pi^{-1}(x_0) \subset V(M) \), \(x_0 = \pi(u_0) \). The result obtained in terms of the curve (5.3) might be equally applied to the curve \(C_0^\alpha(t) \) given by (4.2). Therefore:

\[
C_0^\alpha(t) \in V_{x_0}, \quad 0 \leq \theta \leq 2\pi, \quad 0 \leq t \leq r.
\]

In addition to (5.1) we consider:

\[
\frac{\partial}{\partial t} \alpha^\gamma(\theta, t) = (d_t \alpha^\gamma(\theta, 0)) \frac{d}{dt} t
\]

\[
\alpha^\gamma(t) = \alpha^\gamma(\theta, t).
\]

By (1.14) one has:

\[
\vec{A}(\gamma X, \gamma Y) = \gamma S^1(X, Y) = 0
\]

for any \(X, Y \in \Gamma(V(M), \pi^{-1} T(M)) \). Let us define:
\[
\frac{D}{dt}(\tilde{X}, t) = (\tilde{\nabla}_{\tilde{\omega}_t} \tilde{X})_{u(t, t)} \tag{5.7}
\]

for any tangent vector field \(\tilde{X} \) of \(V(M) \) defined along the 2-parameter surface \(\alpha^\tau \) in \(V(M) \). Since \(C^\alpha_0 \) lies entirely in \(V_{\gamma_0} \), and \(V_{\gamma_0} \) is the maximal integral manifold of the vertical distribution \(\text{Ker} (d\pi) \) passing through \(u_0 \), one obtains:

\[
\frac{\partial \alpha^\tau}{\partial t}(t, t), \quad \frac{\partial \alpha^\tau}{\partial \theta}(0, t) \in \text{Ker} (d_{\alpha(0, t)} \pi) \tag{5.8}
\]

for \(0 \leq \theta \leq 2\pi, 0 \leq t \leq r \). Using (5.6) - (5.8) we derive:

\[
\frac{D J^\alpha}{dt}(0, 0) = \left\{ \tilde{\nabla}_{\tilde{\omega}_0} \frac{\partial \alpha^\tau}{\partial t} \right\}_{u_0} \tag{5.9}
\]

since \(\left[\frac{\partial \alpha^\tau}{\partial t}, \frac{\partial \alpha^\tau}{\partial \theta} \right] = 0 \).

6. PROOF OF THE MAIN RESULT

Let \(\tilde{\pi}: T(V(M)) \to V(M) \) be the natural projection of the tangent bundle over \(V(M) \). We consider the natural imbedding \(\eta_t: T(V(M)) \to T(T(V(M))), t \in IR, \) defined as follows: Let \(\tilde{X}_0 \in T(V(M)) \). Consider the curve \(a(t) = t \tilde{X}_0 \) in \(T(V(M)) \). Set:

\[
\eta_t(\tilde{X}_0) = \frac{da}{dt}(t). \tag{6.1}
\]

Actually, if \(\tilde{\pi}(\tilde{X}_0) = u_0, u_0 \in V(M) \), then \(a(t) \) is a curve in \(T_{u_0}(V(M)) \). Therefore, its tangent vector at \(a(t) \) is an element of \(T_{\tilde{X}_0}(T_{u_0}(V(M))) = \text{Ker} (d_{\tilde{X}_0} \tilde{\pi}), t \in IR \). Let us consider now the curve (5.3) with \(\tilde{X}_0 \in W_0 \) not necessarily vertical. We may rewrite it:

\[
\gamma_0(t) = \exp_{u_0} a(t) \tag{6.2}
\]

for small enough values of \(t \); taking the differential of (6.2) at \(t \) furnishes:

\[
\frac{d\gamma_0}{dt}(t) = (d_{a(t)} \exp_{u_0}) \eta_t(\tilde{X}_0). \tag{6.3}
\]

Take (6.3) at \(t = 0 \); since \(\gamma_0 \) is an auto-parallel curve of (1.11) with initial data \((u_0, \tilde{X}_0) \) it follows:

\[
(d_{u_0} \exp_{u_0}) \eta_0 \tilde{X}_0 = \tilde{X}_0. \tag{6.4}
\]

We apply the results given by (6.3) - (6.4) to the curve \(C^\alpha_0 \). Thus one has:
\[\frac{\partial \alpha^r}{\partial t} (0, 0) = \gamma W(\theta), \quad 0 \leq \theta \leq 2\pi. \] (6.5)

Let \((x^a) = (x^1, y^i), 1 \leq a \leq 2n,\) be the natural local coordinates on \(V(M).\) Let \(T_{bc}\) be the corresponding local coefficients of the linear connection (1.11). The right hand side of (5.9) is locally given by:

\[\left\{ \begin{array}{c}
\alpha^r \\
\frac{\partial \alpha^r}{\partial \theta}
\end{array} \right\}_{u_0} = \frac{\partial^2 \alpha^a}{\partial \theta \partial t} (0, 0) + \Gamma_{bc}^a (\alpha^r (0, 0)) \frac{\partial \alpha^b}{\partial \theta} (0, 0) \frac{\partial \alpha^c}{\partial t} (0, 0) \] (6.6)

where \(\alpha^a (0, t) = (\alpha^1 (0, t), ..., \alpha^{2n} (0, t)).\) Let \(W^i (\theta) = x^i \cos \theta + y^i \sin \theta\) be the components of the Finslerian vector field \(W(\theta)\) on \(M.\) Our (6.5) leads to:

\[\frac{\partial \alpha^i}{\partial t} (0, 0) = 0, \quad \frac{\partial \alpha^{a+i}}{\partial t} (0, 0) = W^i (\theta) \] (6.7)

for \(1 \leq i \leq n.\) By (5.1) - (5.2) and (6.6) - (6.7) one has

\[\frac{D J^r}{\partial t} (0, 0) = \frac{d W^i}{d \theta} (0) \hat{\theta}_1 \bigg|_{u_0} \]

or:

\[\frac{D J^r}{\partial t} (0, 0) = \gamma W \left(\theta + \frac{\pi}{2} \right). \] (6.8)

For each \(\vec{X} \in T_u (V(M))\) we put \(\| \vec{X} \| = \langle g_u (\vec{X}, \vec{X}) \rangle^{1/2}.\) We consider the function \(f^r_0 : [0, r] \to (0, +\infty)\) given by:

\[f^r_0 (t) = \| J^r_0 (t) \|^2, \quad 0 \leq t \leq r. \] (6.9)

We develop (6.9) as a Taylor series:

\[f^r_0 (t) = \sum_{k=0}^{4} \frac{t^k}{k!} (D^k f^r_0) (0) + o (t^4) \] (6.10)

and compute \(D^k f^r_0\), where \(D^k = \frac{\partial^k}{\partial t^k}, 0 \leq k \leq 4.\) By (5.2), (6.8) one obtains:

\[f^r_0 (0) = 0 \]

\[(D f^r_0) (0) = 0 \]

\[(D^2 f^r_0) (0) = 0 \] (6.11)

since the connection (1.11) verifies (1.12). How (5.1) is the infinitesimal variation induced by the variation \(\alpha^r;\) by Theorem 1.2. in \([5, p.64]\) one obtains:
\[\tilde{\nabla}^2_{\alpha \gamma} J^\nu + \tilde{\nabla}^2_{\alpha \gamma} \tilde{A} \left(J^\nu, \frac{\partial \alpha^\nu}{\partial t} \right) + \tilde{B} \left(J^\nu, \frac{\partial \alpha^\nu}{\partial t} \right) \frac{\partial \alpha^\nu}{\partial t} = 0. \tag{6.12} \]

Take (6.12) at \(u_0 \). By (5.1), (5.6), (5.8) it turns into:
\[\{ \tilde{\nabla}^2_{\alpha \gamma} J^\nu \}_u = 0. \tag{6.13} \]

Consequently:
\[(D^3 f^\nu_0)(0) = 0. \tag{6.14} \]

Let \(S(X, Y) Z = \tilde{R}(\gamma X, \gamma Y) Z \) be the vertical curvature of the Miron connection, \(X, Y, Z \in \Gamma(V(M), \pi^{-1} T(M)) \). By (3.2) one obtains \(B(\gamma X, \gamma Y) \gamma Z = \gamma S(X, Y) Z \).

Using (1.12) we have:
\[(D^4 f^\nu_0)(0) = 8 \tilde{g}_{u_0} \left(\{ \tilde{\nabla}^2_{\alpha \gamma} J^\nu \}_u, \{ \tilde{\nabla}^2_{\alpha \gamma} J^\nu \}_u \right). \tag{6.15} \]

Take the covariant derivative of the Jacobi equation (6.12) in the direction \(\frac{\partial \alpha^\nu}{\partial t} \). Moreover, take the inner product of the resulting equation by \(\{ \tilde{\nabla}_{\alpha \gamma} J^\nu \}_u \).

Then (6.15) becomes:
\[(D^4 f^\nu_0)(0) = 8 \tilde{g}_{u_0} \left(\tilde{\nabla}^2_{\alpha \gamma} \tilde{B} \left(J^\nu, \frac{\partial \alpha^\nu}{\partial t} \right) \frac{\partial \alpha^\nu}{\partial t}, \tilde{\nabla}^2_{\alpha \gamma} J^\nu \right). \tag{6.16} \]

On the other hand:
\[\tilde{\nabla}^2_{\alpha \gamma} \tilde{B} \left(J^\nu, \frac{\partial \alpha^\nu}{\partial t} \right) \frac{\partial \alpha^\nu}{\partial t} = \tilde{B} \left(\tilde{\nabla}^2_{\alpha \gamma} J^\nu, \frac{\partial \alpha^\nu}{\partial t} \right) \frac{\partial \alpha^\nu}{\partial t}. \tag{6.17} \]

Now take (6.17) in \(u_0 \) and use (6.8). From the resulting equation let us substitute in (6.16). We obtain:
\[(D^4 f^\nu_0)(0) = -8 \tilde{g}_{u_0} \left(\tilde{B} \left(\gamma W \left(\theta + \frac{\pi}{2} \right), \gamma W(\theta) \right) \gamma W(0), \gamma W \left(0 + \frac{\pi}{2} \right) \right). \tag{6.18} \]

Moreover, in terms of the vertical curvature tensor:
\[(D^4 f^\nu_0)(0) = -8 S_{u_0} \left(W \left(\theta + \frac{\pi}{2} \right), W(\theta), W \left(0 + \frac{\pi}{2} \right), W(\theta) \right). \tag{6.19} \]

At this point we may substitute in (6.10) from the formulae (6.11), (6.14) and (6.19). This procedure gives:
\[f^\nu_0(t) = t^2 \left\{ 1 - \frac{t^2}{3} S_{u_0} \left(W \left(\theta + \frac{\pi}{2} \right), W(\theta), W \left(0 + \frac{\pi}{2} \right), W(\theta) \right) + o(t^2) \right\}. \tag{6.20} \]

As \((1 - \delta)^{1/2} = 1 - \frac{1}{2} \delta + o(\delta^2) \) we obtain:
\[L(C^*) = 2 \pi r + \int_0^{2\pi} \left(W(\theta + \frac{\pi}{2}), W(\theta), W\left(\theta + \frac{\pi}{2}\right), W(\theta) \right) d\theta + o(r^3). \] (6.21)

Now \(\left\{ W(\theta), W\left(\theta + \frac{\pi}{2}\right) \right\} \) is an orthonormal basis in \(p_0 \in GF_2(M), u_0 = \rho(p_0) \), and thus (6.21) leads to (4.4), Q.E.D.

REFERENCES

ÖZET

Bu çalışmada, genelleştirilmiş bir \(M \) Finsler uzayı verildiğine göre, \(M \) üzerindeki bütün teğet doğrultularının \(V(M) = T(M) - 0 \) manifoldum yapısı incelenmektedir.