2-Transitive Frobenius Q-Groups

Temha ERKOÇ¹ and Erhan GÜZEL²

Abstract. A Q-group is a finite group all of whose irreducible complex characters are rationally-valued. In this paper, we find all 2-transitive Frobenius Q-groups.

Keywords: Q-Groups, Frobenius Groups.

AMS Subject Classification Number: 20C15.

INTRODUCTION

We use the following notations in this paper

Notation. C the field of complex numbers; Z the ring of rational integers; \(\text{Gen}(x)\) the set of generators of cyclic group \(<x>\); \([x]\) the conjugacy class of \(x\); \(N_G(x)\) the normalizer of \(x\) in \(G\); \(C_G(x)\) the centralizer of \(x\) in \(G\); \(\text{Aut}(x)\) the group of automorphisms of \(<x>\); \(\varphi\) Euler’s function; \(\times\) semidirect product; \(Q_8\) the quaternion group of order 8; \(E(p^n)\) the elementary abelian \(p\)-group of order \(p^n\).

Q-GROUPS

Definition. A finite group whose complex characters are rationally-valued is called a Q-group.

For example, all of the symmetric groups and finite elementary abelian 2-groups are Q-groups. Kletzing’s lecture notes, [3], presents a detailed investigation into the structure of Q-groups. General classification of Q-groups has not been able to be done up to now, but some special Q-groups have been classified. Frobenius Q-groups were classified by [1].
Let G be a finite group of order n and let ξ be a primitive n-th root of unity in the field C. Then, all of the complex character values of G lie in the subring $\mathbb{Z}[\xi]$ of C. Moreover, if G is a Q-group, these values lie in \mathbb{Z} since $\mathbb{Z}[\xi] \cap Q = \mathbb{Z}$. Now, we say that a finite group is a Q-group if and only if the values of its all the irreducible complex characters lie in \mathbb{Z}.

Another characterization of Q-groups is the following theorem.

Theorem 1. Let G be a finite group. Then, G is a Q-group if and only if for every $x \in G$, $\text{Gen}(x) \subseteq [x]$ i.e. for every $x \in G$, $N_G(x)/C_G(x) \cong \text{Aut}(x)$ [3].

Now, we can easily see the following corollary.

Corollary 2. Let G be a Q-group. Then:

1) $[N_G(x):C_G(x)] = |\text{Aut}(x)| = \varphi(|x|)$, for every $x \in G$.

2) If $G \neq \{1\}$, $2||G||$.

3) If N is a normal subgroup of G, then G/N is a Q-group.

FROBENIUS GROUPS

Definition. Let G be a transitive and non-regular permutation group on Ω, $|\Omega| \in IN$, $\alpha \in \Omega$, $H = G_{\alpha}$. Then, G is called a Frobenius group with complement H if and only if the identity element of G is unique element that fixes more than one element of Ω.

Definition. A trivial intersection set in a group G is a subset S of G such that for all $g \in G$, either $S^g = S$ or $S^g \cap S \subseteq \{1\}$.

Lemma 3. Let G be a finite group, $\{1\} \neq H$ a proper subgroup of G. Then the following are equivalent:
(a) \(G \) is a Frobenius group with complement \(H \).

(b) \(H \) is a trivial intersection set and \(H = N_G(H) \). [2]

Now we can say that a finite group \(G \) is a Frobenius group if and only if it contains a proper subgroup \(H \neq \{1\} \), called a Frobenius complement, such that \(H \cap H^x = \{1\} \) for all \(x \not\in H \).

By Frobenius Theorem [2, p.63], a Frobenius group \(G \) with complement \(H \) has a normal subgroup \(K \), called Frobenius kernel, such that \(HK = G \). If \(K = \{x_1, \ldots, x_n\} \) where \(n \in \mathbb{N} \), then we have \(G = K \cup \bigcup_{i=1}^{n} (H^{x_i} - \{1\}) \), called Frobenius partition.

Definition. Let \(G \) be a group and \(\varphi \) be an automorphism of \(G \). Then, \(\varphi \) is called fixed-point-free automorphism if \(\varphi(g) \neq g \) for every \(g \in G - \{1\} \).

Let \(G \) be a Frobenius group with kernel \(K \) and complement \(H \). Then, for every \(h \in H - \{1\} \), \(k \mapsto h^{-1} kh \) is an automorphism of \(K \) fixing only the element \(1 \in K \). Thus we can say that all elements of \(H \) except 1 are fixed-point-free of \(K \). Moreover, a semi-direct group \(G = K \rtimes H \) is a Frobenius group if \(h \) is fixed-point-free of \(K \) for every \(h \in H - \{1\} \).

Lemma 4. Let \(G \) be a transitive permutation group on \(\Omega \), \(|\Omega| \in \mathbb{N} - \{1\} \). Then \(G \) is 2-transitive if and only if \(G = G_\alpha \cup G_\alpha x G_\alpha \) for all \(\alpha \in \Omega \) and \(x \in G - G_\alpha \) [4].

Theorem 5. Let \(G \) be a Frobenius group with kernel \(K \) and complement \(H \). Then \(G \) is 2-transitive if and only if \(|K| = |H| + 1 \).

Proof. By the definition of Frobenius group, \(G \) is a transitive permutation group on \(\Omega \), \(|\Omega| \in \mathbb{N} \) and there is \(\alpha \in \Omega \) such that \(H = G_\alpha \). By Lemma 4., we know that \(G \) is 2-transitive if and only if \(G = H \cup H x H \) for every \(x \in G - H \). Therefore, if \(G \) is 2-transitive, then we have
\[|G| = |H| + |H \times H| = |H| + \frac{|H| \cdot |H^2|}{|H \cap H^2|} = |H| + \frac{|H|^2}{|H \cap H^2|} \]

for every \(x \in G - H \). Since \(H \) is a trivial intersection set in \(G \) and \(H = N_G(H) \) by Lemma 3., we have \(|H \cap H^2| = 1 \) for every \(x \in G - H \). Thus, \(|G| = |H| + |H|^2 \). Also, since \(|G| = |K| \cdot |H| \) by Frobenius Theorem, we have \(|K| \cdot |H| = |G| = |H| + |H| \) and so \(|K| = |H| + 1 \). Conversely, we can easily that if \(|K| = |H| + 1 \), then \(G \) is 2-transitive.

Theorem 6. Let \(G \) be a Frobenius \(Q \)-group with kernel \(K \) and complement \(H \). Then, \(H \cong Z_2 \) or \(H \cong Q_8 \). Moreover,

1) If \(H \cong Z_2 \), then \(K \) is an elementary abelian 3-group and for every \(t \in K \),

\(t^u = t^{-1} \) where \(1 \neq u \in H \).

2) If \(H \cong Q_8 \), then \(K \) is an elementary abelian \(p \)-group where \(p = 3 \) or \(p = 5 \). [1]

2-TRANSITIVE FROBENIUS \(Q \)-GROUPS

All 2-transitive Frobenius \(Q \)-groups are given by the following theorem.

Theorem. Let \(G \) be a 2-transitive Frobenius \(Q \)-group. Then, \(G \cong S_3 \) or \(G \cong E(3^2) \times Q_8 \) where \(E(3^2) \) is the 2-dimensional irreducible module of group algebra \(Z_3 Q_8 \).

Proof. Let \(G \) be a 2-transitive Frobenius \(Q \)-group with kernel \(K \) and complement \(H \). By Theorem 6, we know that \(H \cong Z_2 \) or \(H \cong Q_8 \).

1) If \(H \cong Z_2 \), then \(K \) is an elementary abelian 3-group and for every \(t \in K \),

\(t^u = t^{-1} \) where \(1 \neq u \in H \) by Theorem 6. Moreover, since \(G \) is 2-transitive, we have \(|K| = |H| + 1 = 3 \) by Theorem 5. Therefore, \(G \cong E(3) \times Z_2 \cong S_3 \). Conversely, we can see easily that \(S_3 \) is a 2-transitive Frobenius \(Q \)-group.
2) If \(H \cong Q_8 \), then \(K \) is an elementary abelian \(p \)-group where \(p = 3 \) or \(p = 5 \) by Theorem 6. Since \(G \) is 2-transitive, we have \(|K| = |H| + 1 = 9\) by Theorem 5. Then, \(K \) must be an elementary abelian 3-group of order 9. Since \(K \triangleleft G \), \(H \) acts on \(K \) by conjugation. Thus, \(K \) may be considered as a \(Z_3H \)-module, so \(K \) defines a representation of \(H \) over the field \(Z_3 \). Since \(3| |H| \), we can use ordinary representation theory, so \(K \) is a direct sum of some irreducible modules of group ring \(Z_3H \) by Maschke’s Theorem and Wedderburn’s Theorem. \(H \) has exactly five non-isomorphic irreducible module over the field \(Z_3 \) and four of them are 1-dimensional so the other is 2-dimensional. Since \(\chi(u) = 1 \in Z_3 \) for every 1-dimensional representation \(\chi \) of \(H \) where \(u \) is the involution, \(K \) must be the 2-dimensional irreducible module of group ring \(Z_3H \). Therefore, we have \(G \cong E(3^2) \times |Q_8| \) where \(E(3^2) \) is the 2-dimensional irreducible module of group algebra \(Z_3Q_8 \). Conversely, let \(G \cong E(3^2) \times |Q_8| \) where \(E(3^2) \) is the 2-dimensional irreducible module of group algebra \(Z_3Q_8 \). Then, \(G \) is a Frobenius group with kernel \(K \) \((\cong E(3^2))\) and complement \(H \) \((\cong Q_8)\) since the involution of \(H \) is fixed-point-free of \(K \). Moreover, since \(|K| = |H| + 1\), \(G \) is 2-transitive by Theorem 5. Since \(G \) is a Frobenius group, we have Frobenius partition \(G = K \cup \left(\bigcup_{g \in K} (H^g - \{1\}) \right) \). Also, for every \(g \in K \), \(H^g \) \((\cong Q_8)\) is a \(Q \)-group and for every \(1 \neq x \in K \), \(x^u = x^2 \) where \(u \) is the involution of \(H \). Thus, by the definition of \(Q \)-group, we can see easily that \(G \) is a \(Q \)-group.

REFERENCES

Temha ERKOÇ
Istanbul University, Faculty of Science,
Department of Mathematics, 34134 Vezneciler, Istanbul, Turkey,
E-mail: erkoct@istanbul.edu.tr

Erhan GÜZEL
Istanbul University, Faculty of Science,
Department of Mathematics, 34134 Vezneciler, Istanbul, Turkey,
E-mail: guzele@istanbul.edu.tr