The past and the future of MPEG transfer

Developing technologies need new standarts and new implementations. Digital video, a developing technology part, is also popular technology and it promises more thing. Before 6 or 7 years, a ".MPEG" video text file, without hardware speed-up, has been watched as a 25 second timing files resolute at 160X120 in Xing window. But, today higher quality views can be watched by DVD"s.

MPEGs' standarts has an importance place in visual communication. And it will absolutely be a part of our life in future. This technology, used in cable TV, VCDs' and DVDs', can be used all fields of visual communication.

Key Words: MPEG, digital video, visual communication
Hızla gelişen teknoloji beraberinde yeni standartlar ve yeni uygulamalar getiriyor. Dijital video da çok popüler ve çok şey vadeden bir teknoloji. 6 - 7 sene önce, ".MPG" uzantılı bir video dosyasını, küçük bir "Xing" penceresinde, donanım hizlandırması bir şekilde 160x120 çözünürlükteki 25 sanıyelik dosyalar şeklinde izlerken bugün DVD filmlerle mükemmelden görüntüler seyrediyorum.

Ancak, yaygınlaşan popüler eğlence aracı DVD'ler, müzik CD'lerinin, yine bir Mpeg standartı olan "mp3" ile yaşadığı sıkıntılari, hayatının çok erken döneminde, Mpeg 4 - "DivX ;)" ile yaşamaya başladı. Ortalama 7-8 Gigabyte tutan DVD filmlerin, 600-700 Megabyte gibi boyutlara, üstelik görüntüde pek de fazla kalite farkı olmaksızın kopyalanması, film enstitüsünden para kazanlarının ceke uykularını kaçırmı olası gerek.

MPEG nedir ?

MPEG (Video Pictures Extended Group), bir ISO hareketli görüntü (Video) ve ses (Audio) sıkıştırma standartıdır. Sistem Diski, CD vb. gibi ortamlarda hareketli görüntülerin saklanması ve iletildesini temin eder. Sıkıştırma oranları 1:50 lere kadar çıkabilmektedir. MPEG formatı çok uzun görüntülerin bile az yer kaplaması gibi nedenlerden dolayı internet için neredeyse standart hareketli görüntü formatı olmuştur. MPEG oluşturma esnasında
IBP kodlama denilen bir kodlama şekli kullanılır. MPEG1, MPEG2 ve MPEG4, en çok kullanılan MPEG görüntü formatılandır.
Çok geniş bir konu olduğu için bazı terimleri açıklamak yerinde olacaktır.

<table>
<thead>
<tr>
<th>MPEG</th>
<th>Moving Pictures Expert Group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ISO (International Standards Organisation)</td>
</tr>
<tr>
<td></td>
<td>IEC (International Electro-Technical Commission)</td>
</tr>
<tr>
<td></td>
<td>altında çalışan standart belirleme grubu.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frame</th>
<th>Kare</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bir anda ekranında görülen görüntü. FPS (Frame per Second) bir saniyede gösterilen kare sayısıdır. İnsan gözü ortalama 24 FPS'lik bir görüntüyü akıcı kabul eder.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Resolution</th>
<th>Çözünürlük</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gösterilen resmin ya da genel anlamda filmin boyutu. Sayı x Sayı olarak ifade edilen çözünürlük, karenin yatay ve dikey olarak kaç tane nokta (piksel) içerdğini belirtir. Sayıların yüksek olması daha fazla ayrıntının seçilebilmesini ve daha kaliteli bir görüntü edinilebilmesini sağlar.</td>
</tr>
</tbody>
</table>

Interlaced	Ekrana gelen görüntüünün tek ve çift sayılı satırlar için ayrı zamanlarda yönlanması. Interlaced görüntü akıcı sahnelerin göze fazla farklıltından dolayı daha az tutan bir donanımla izlenmesini sağlar. Televizyonlar "Interlaced" görüntü verirken yeni monitörler hemen her çözünürlükte "Non-Interlaced" yani bütün satırların sırayla yollandığı, daha kaliteli görüntü verirler.	
Bitrate	Dijital olarak yollanan verinin, yani bit'lerin kaynağından ya da hedefteki aynı anda ne kadar fazlasının bir den işlenebildiğini belirtir. CD-ROM ya da DVD-ROM gibi araçlar Megabit/saniye'lerle ölçülen hızlar sunarken, İnternet'e ortalama bir modemle bağlanan bir kullanıcının erişileceği teorik genişlik 56 kilobit/saniyedir ki, pratikte bunun yarısı çok makul sayılabılır.	
Color Depth	Renk derinliği	Bit cinsinden ifade edilen renk derinliği bir noktanın birbirinden farklı olarak alabileceği renk sayısını belirler. Bir nokta kendisini oluşturan yeşil mavi ve kırmızı oranlarının ne kadar karıştığıyla ifade edilir. Günümüz monitörlerinin üst sınıfn olan "True Color" - 32 Bit renk derinliği bu bileşenlerin her birinin ve bir de parlaklık değerinin 256 farklı oranda karşabileceği gösterir.
Raw	Ham görüntü	Bir karedeki bütün noktaların aynı regrenk değerlerin kayıtlar edilmesiyle oluşturulur. Bitmap (.bmp) dosyalar resmin raw olarak saklandığı dokümanlara örnektir.
Subsampling	Yeniden boyutlandırma	Bir resmin ya da karenin orijinal boyutundan farklı bir boyuta genişletilmesi ya da küçültülmesi.
Codec	Genelde Windows için bir video ya da ses verisinin nası çözüleceğini ya da hem nasıl çözüleceğini hem de nasıl kodlanacağını belirtir uygulamalar.	
MPEG, görsel ve işitsel verinin etkin bir şekilde aktarılması için çeşitli algoritmik altyapıların belirlendiği bir standarttır. Çok güçlü bir standart olması Quicktime Movie ya da Real Media gibi başka standartları da kendi algoritmalarını temel almaya zorlamıştır. Kelime anlamındaki MPEG, yani standart belirleme grubu, standarın genel algoritmalarını belirler ve çeşitli şirketler (ör: Microsoft - .asf) ya da şahislar (ör: project mayo: DivX.j) bu standarın ihtiyaçlarına göre biçimlendirir.

MPEG gibi standartlar sayesinde raw olarak çok büyük boyutlar tutan veri makul kayıplarla kabullenilebilir boyutlara indirgenir. Hemen her video ve ses standartı kayıplarla çalışır. MPEG’in başarısı ise kullanıcıya, arızalanın minimum kayıp + minimum dosya boyutunu sunabilmesindedir.

MPEG gibi bir standarda niye ihtiyaç duyulduğunu açıklayalım:

Elimizde 352x240 (Video Cd) boyutunda, Yüksek Renk derinliğinde (24 bit) bir raw resim dosyasının ufak ek bilgiler hariç boyutu şu şekilde olacaktır:

352x240x3=253,440 byte. (her bayt 8 bit veri saklar.)

Gözün kabulleneceği, 24 kare/saniye hızında 10 saniyelik bir animasyon ise:
253,440x10=58 megabaytlik bir dosya oluşturacaktır.

Gerçekten büyük bir sayıl! Bu oranla 70 dakikalık bir video 172 kilobayt/saniyelik sıkıştırılmamış stereo ses ile birlikte toplam 25 Gigabayt! tutacaktır.

Bu boyutu küçüttmek için uygulanacak belki de en basit çözüm Winzip gibi programların kullandığı çok köklü, hiç kaybın olmadığı -ki hatalı bir bit bile bir programın çalışmaması ya da
daha kötüsü hatalı çalışması anlamına gelebilir- Huffman, LZW gibi algoritmalarla sıkıştırma yapmaktadır.

58 megabaytılık video dosyasını yüksek oranda sıkıştırma yapabilen WinAce ile mümkün olan en fazla miktarda sıkıştırmağımızda elde edilen dosyanın boyutu 22 megabayt olmaktadır. Bu, halen daha kabullenilemez bir boyut!

MPEG ise temel prensibi itibariyle, gözle görülmeyen ya da zor görünen bir şekilde video görüntüsünü "bozarak", 58 megabaytılık bu dosayı Mpeg-1 formatında 2,51 megabayt, Mpeg-4 - DivX ;) formatında ise 1,67 megabaytılık bir boyuta indirmeyi başardı. Tabii ki bütün dosyalar 352x240 çözünürlük 24 kare/s ve 24 bit derinlikteydi. 44,100 Hz 16bit stereo 172 kilobayt/s tutan sesi ise tanıdik MP3 formatı 16 kilobayt/s'ye düşürebiliyordu.

MPEG diğer bütün "kayba dayalı" video sıkıştırma algoritmalarında olduğu gibi akan görüntüde değişen alanların değişmeyeşen alanlardan daha az olduğu mantığına göre çalışır. Sabit görüntülerde, yani resim dosyalarında kayba dayalı sıkıştırma en iyi JPEG (.jpg) formatının başarıdığı bir gerçekleşti. Ancak bütün kareleri JPEG olarak sıkıştırıp bu diziyi yine bir nevi "raw" video dosyası olarak kaydetmek, istenen kalite & dosya boyutunu veremeyecektir. (Aslında bu iki Motion-JPEG isimli yaygın olmayan bir algoritma yapmaktadır.)

MPEG'in hedefi sabit bir kaynak/hedef bitrate'inde kaliteli görüntü sunabilmektir. Bütün MPEG versiyonlarında temel prensip bu olduğu için çok karchık bir sahnede, gelen datayı maximum bitrate'in altında tutmak için kayıp artacak ve sıkıştırma algoritmalarından kaynaklanan hatalar göze daha çok çarpacaktır.
İLETİŞİM FAKÜLTESİ DERGİSİ/ Görüntü Aktarının Dünü ve Geleceği

MPEG'in hedefi "insan" gözüdür. Sihirbazlık da diye bileceğimiz MPEG, "göz" dikkatsizliklerinden yararlanarak veriyi kolay kolay fark edilemeyecek şekilde bozarak (kayıplı olarak) sıkıştırır. Bunun basit bir örneği hareket halindeyken keyifle izlediğimiz video dosyasını durdurduğumuzda, gölgevi ve bozuk görüntüler elde etmemizdir.

Elimizdeki 352x240 çözünürlükte raw datayı VCD'lerde kullanılan Mpeg-1 algoritmasyyla sıkıştırdığımızda öncelikle, elimizde Kırmızı - Yeşil - Mavi kodlaması olan kare, YUV denilen, bir parçaklık (Y) iki tane de renk (U & V) kodlamasına çevrilir. Bu sayede bir kareden yine aynı çözünürlükte üç tane kare elde edilmiş olur. Bunun sebebi insan gözünün paralaktikti değişimlere renkdeki değişiklere olduğundan daha duyarlı olmasıdır. Daha sonra, nasıl "göz" kolyı kolay fark etmez diye, U ve V kanallarının çözünürlüğü "subsampling" denilen işlem ile 176x120 çözünürlüğüne düşürülür. (ilk kayıp)

ama"lar olduğu için burada da kayıp vardır. Huffman
algoritmasıyla ise çokça 0'dan oluşan son matris kayıpsız
sıkıştırılır.

Mpeg-1, atası sayılan H.261 algoritmasından farklı olarak
iki tip "geçiş" karesi (P & B) kullanmıştır. Bir adet de referans
karesi (I) ile Mpeg-1 bitstream'i üç tip kare içerir: I, P ve B.
I kareleri temelde JPEG karelerdir. Bütün kare bir bütün olarak
kodlanmıştır. Algoritmalar sayesinde elde edilen P ve B
karelerinden P, sadece bir önceki I karesini referans
alabileceğiken, B, önceki ya da sonraki hem I hem de P karesini
birlıkte ya da ayrı ayrı referans alabilir (I). Tipik bir Mpeg-1 kare
akışı, bağımlılıklarla birlıkte şöyle olacaktır:

Çözücü program, decoder, MPEG standartlarına göre
çalışır. Kendisine gönderilen bir veri akışında kareleri tanımlar,
verinin içerdiği DCT parametreleriyle orijinal raw veriyre yakın bir
görüntüyü elde eder. Çözçünün sorunu bu işlemi hızlı bir şekilde yapabilmektir. Yeterli işlemci gücüne sahip olunmadığı zamanlar kare atlamak çoğu çözücü program için caziptir.

Kodlayıcı programın, encoder'in ise işi daha zordur. Kendisine gönderilen raw datayı hedef bitrate'a en uygun kalitede aktarmak kaliteli bir encoder'in amacıdır. Xing'in yaptığı gibi bütün kareleri I olarak kodlayabilir ya da çok akılcı algoritmalarla uygun I/P/B oranı yakalanmaya çalışılır.

Mpeg-2 ortalama çözünürlüğü 720x480'dir. 5 ayrı kanaldan "surround" ses de verebilen Mpeg-2 bu lüksü DVD'ler gibi geniş hat genişliği ve kaynak dosya boyutuyla yakalamıştır. Mpeg-1 ve Mpeg-2 ortalama çözünürlük değerlerini sırasıyla televizyon ve HDTV'den (High Definition TV - Yüksek kalitede görüntü sunan TV) almıştır. Televizyonlar Avrupa'da PAL ya da SECAM formatında, 50hz interlaced (saniyede 25 kareye denk gelir), Amerika'da NTSC formatında 60hz interlaced görüntü verir. Mpeg-2'ye duyulan ihtiyaç yüksek çözünürlükte interlaced veriyi Mpeg-1'in etkin bir şekilde sıkıştıramamasındandır.
MPEG standartlarının karşılaştırılması

<table>
<thead>
<tr>
<th></th>
<th>MPEG-1</th>
<th>MPEG-2</th>
<th>MPEG-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Çıkış tarihi</td>
<td>1992</td>
<td>1995</td>
<td>1999</td>
</tr>
<tr>
<td>Max. Video Çözünürlüğü</td>
<td>352 x 288</td>
<td>1920 x 1152</td>
<td>720 x 576</td>
</tr>
<tr>
<td>Varsayılan Video Çözünürlüğü (PAL)</td>
<td>352 x 288</td>
<td>720 x 576</td>
<td>720 x 576</td>
</tr>
<tr>
<td>Varsayılan Video Çözünürlüğü (NTSC)</td>
<td>352 x 288</td>
<td>640 x 480</td>
<td>640 x 480</td>
</tr>
<tr>
<td>Max. Ses frekansi</td>
<td>48 kHz</td>
<td>96 kHz</td>
<td>96 kHz</td>
</tr>
<tr>
<td>Max. Ses kanal sayısı</td>
<td>2</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Max. Bitrate</td>
<td>3 Mbit/s</td>
<td>80 Mbit/s</td>
<td>5-10 Mbit/sec.</td>
</tr>
<tr>
<td>Kullanılan ortalama bitrate</td>
<td>1380 kbit/s (352 x 288)</td>
<td>6500 kbit/s (720 x 576)</td>
<td>880 kbit/s (720 x 576)</td>
</tr>
<tr>
<td>Kare / saniye (PAL)</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Kare / saniye (NTSC)</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Video kalitesi</td>
<td>Tatminkar</td>
<td>Çok iyi</td>
<td>İyi - çok iyi</td>
</tr>
<tr>
<td>Kodlama için donanım ihtiyacı</td>
<td>Düşük</td>
<td>Yüksek</td>
<td>Çok yüksek</td>
</tr>
<tr>
<td>Çözme için donanım ihtiyacı</td>
<td>Çok düşük</td>
<td>Orta</td>
<td>Yüksek</td>
</tr>
</tbody>
</table>
Mpeg-3 ilk akla geldiği gibi, MP3 formatı değildir. Mpeg-3 standartları zamanla Mpeg-2'ye entegre olmuş, Mpeg-3 silinmiştir.

Yazının başından beri duyduğunuz "DivX ;)", ise Mpeg-4 tabanlı bir codecdir. Aslında Microsoft'un düşük hat genişlikleri için kullandığı ASF formatının "kırlımış" halidir. Microsoft'un Mpeg-4 codec'i sadece kodlanmış videonun çözümünü ve gösterrimini yaparken, DivX ;) raw datayı kodlayarak sıkıştırabilir.
de. "Geri Mühendislik" (Reverse Engineering) ya da daha yaygın adıyla "kırma" (hack) ile elde edilmiş bir uygulama olsa da, DivX ;) bu kodu gönüllü bir şekilde optimize eden insanların sayesinde çok gelişmiş ve kendi başına bir Mpeg-4 temelli bir standart olmuştur. "İzlediğin Kadard Öde" tarzında başarılı bir DVD kiralama uygulaması olan DivX ile karıştırmamak için de ismi "DivX ;)", olarak konmuştur. (göz kirpan insane figürü ismin bir parçasıdır) Yüksek kalitede ve düşük boyutta video kayıt imkanı sunabilmesi ona olan talebi arttırmıştır.

DVD'lerin doğuş ve yayılışın felsefesinin altında VCD'ler gibi kolayca kopyalanamamak yatar. Yüksek kalitede televizyon (HDTV) gibi bir teknolojiyle birlikte DVD'ler geleceğin bireysel eğlence aracı olmaya adaydır. Tabii ki bu teknolojiye yatırım yapan şirketler ve firmaları sinemadan sonra DVD olarak pazarlayıp yapımçıların esas hedefi, CD teknolojisinin eksiklerinden ders alarak DVD teknolojisinin kopyalamaya karşı korunaklı bir teknoloji olarak kullanmaktr. Fakat günümüzde Mpeg-2 formatında kaydedilmiş DVD filmler bile Mpeg-4 - DivX ;) formatına çevrilerek illegal olarak piyasaya sürülmektedir.

Fakat DVD teknolojisi sadece film sektöründe değil aynı zamanda firmaların kurum içi eğitim aktivitelerinde, satış ve pazarlama faaliyetlerinde, fuar ve ürün tanıtımlarında da kullanılmaktadır.
Benzer şekillerde olmakla birlikte POS (Point of Sales) ve POI (Point of Information) uygulamalarında da DVD’nin interaktif teknolojisinden yararlanılmaktadır.

Sesler video dosyalarının özellikle de bir filmin vazgeçilmez parçalarıdır. MPEG standartları, içerisinde sesi işlemek için de yöntemler belirir ancak tüm zamanların en popüler standartı Mpeg-1 Layer-3, nam-ı diğer MP3’tür. Bir ses formatı olan MPEG-1 layer-3 ses kalitesinden en az derecede feragat ederek en yüksek sıkıştırma oranlarını yakalayabilme için günümüze kadar geliştirilmiş en iyi formatlardan biridir. VQF (Yamaha) gibi bu alanda profesyonel çalışmalar yapan rakiplerinin tersine Fraunhofer-Gesellschaft Enstitüsü tarafından geliştirilen MP3 dosyalarının, orijinal müziğin duyulabilir frekans ve sinyal açılarından hiçbir farkı yoktur.

MP3 bir Mpeg-1 standartı olduğu için her türlü ham ses için sabit bir bitrate verecektir. Yani tamamen boş ya da bangır bangır müzik olan iki dosya eğer aynı bitrate’de kodlanmış ve dosya süreleri aynı ise dosya uzunlukları da aynı olacaktır. Ancak
"Joint Stereo" denilen kayıt sistemiyle Stereo ses iki kanalda ses farklı olmadığını tek kanaldan kaydedilecektir. Ayrıca son zamanlarda standardın esnetilmesiyle şarının farklı yerlerinde farklı bitrate sunabilen MP3 kayıt sistemleri de neredeyse standartlaşmıştır.

MP3'ler de codecler aracılığıyla okunur. Ancak, artık, Windows'la bile beraber gelen MP3 okuma codecleri kodlama yapma için kullanılamaz. Çeşitli programlar MP3 formatında kayıt için kendi iç codeclerini kullanırlar.

MP3 formatında kayıt yapılmasını sağlayan, DivX ;) gibi dışsal (external) codec olan "Radium Audio Codec" de yine DivX ;) gibi kırlımsız bir codecdir. Fraunhofer’in "Opticom Mp3 Producer" isimli programda kullandığı iç codec’in geri mühendislikle dışsal bir codec haline getirilmesiyle oluşturulmuştur. Ve yine üstünde çalışan gönlüü insanlar sayesinde hızlı ve güçlü bir codec haline gelmiştir.

Kaynakça:
www.cselt.it/mpeg resmi MPEG sayfası
www.mpeg.org bir çok tekniğin MPEG dökümü
www.divx-digest.com en büyük DivX ;) sitesi
www.digital-digest.com/nickyguides kullanımı kilavuz
http://members.xoom.it/pippo_lupomo/ maximum kalitede DivX ;) filmi
İLETİŞİM FAKÜLTESİ DERGİSİ/ Görüntü Aktarının Dünü ve Geleceği

www.lis.fhg.de Mp3 konusundaki teknik ayrıntıları Fraunhofer-Gesellschaft Enstitüsü'nün web sitesinden öğrenebilirsiniz.