Üveitli Behçet Hastalarında Atak-Remisyon Dönemi
NK İzolasyon Safliklarının Karşilaştırılması

Evaluation of Purity Rates of NK cells Isolated from Behcet’s Disease Patients in Relapse and Remission Periods

Umut Can Küçüksezer¹, İlhan Tahra³, Sema Bilgiç-Gazioglu¹,
Esin Aktaş-Çetin¹, Ahmet Gül², İlkın Tuğal-Tutkun³, Gunnur Deniz¹

¹İmmünoloji AD, Deneysel Tıp Araştırma Enstitüsü, İstanbul Üniversitesi, İstanbul, Türkiye
²Romatoloji BD, İç Hastalıkları AD, İstanbul Tıp Fakültesi, İstanbul Üniversitesi, İstanbul, Türkiye
³Göz Hastalıkları AD, İstanbul Tıp Fakültesi, İstanbul Üniversitesi, İstanbul, Türkiye

ÖZET

Anahtar kelimeler: Behçet hastalığı, üveit, NK hücreleri, atak, remisyon

ABSTRACT
Natural Killer (NK) cells are members of innate immunity who defend against viral infections and tumors with their cytotoxic activity and also regulate immune responses with their cytokine secretions. Different sub-groups of NK cells defined are shown to have initiating or limiting effects on pathogenesis of various diseases. According to research requirements, it is essential to investigate pure NK cells in some experimental setups. This study investigated purity rates of NK cells, isolated by a magnetic activated cell sorting method, in relapse and remission phases of follow-up Behcet's disease patients, as well as healthy controls. Our findings show that NK cells were isolated with a high purity rate both at patients and healthy controls, with no significant difference. In repeated purification of follow-up patients in relapse and remission periods, there were no differences of purity in between two periods, but there were differences between each individual patient. This difference between each individual may arise from different binding specificities of monoclonal antibodies, which vary between each individual. New developments in this area may diminish variabilities and provide increased purity rates.

Keywords: Behçet’s disease, uveitis, NK cells, attack, remission
GİRİŞ

Doğal öldürücü hücreler (Natural killer, NK), doğal immün sistemünün elekmanlarını oluşturan kemik iliği kökenli, büyük granüllü lenfositlerdir. NK hücreleri periferik kan lenfositlerinin %5-15’i oluşturur ve karaciğer, peritoneal kavite, plasenta gibi periferik dokularda bulunurlar (1). NK hücreleri CD3+CD16+CD56+ olarak tanımlanırlar. Bu hücreler, patojenlerle karşı erken konak savunmasına sağlayan tümörle ve virüsle enfekte hücreleri tarmaları öldürme ve immünozpatial sitokinlerin üretimi olmak üzere iki ana fonksiyona aracılık ederler (2-4).

Doğal ve edinsel immün yanıtları düzenleyen çeşitli sitokinler ve kemokinler (IFN-γ, GM-CSF ve TNF-α) salgularlar (5). Th1 ve Th2 hücrelerine benzer şekilde insan NK hücre alt gruplarının da NK1 ve NK2 olarak iki gruba ayrıldığı in vitro ve in vivo çalışmalarında gösterilmştir. Çalışmalar dolaşımındaki NK hücrelerin farklı sitokin profillerine sahip efektif NK hücre alt gruplarına dönüştülebilirğini ve farklı enfamatuvar özellikler kazanabilme yeteneğinde desteklemektedir. In vitro koşullarda IL-12 varlığında kültürde edilen NK hücreleri IFN-γ ve IL-10 üretimken (NK1), IL-4 varlığında kültürde edilen NK hücreleri ise IL-5 ve IL-13 üretimtedirler (NK2). NK1 ve NK2 hücre grupları sitotoksik aktivite bakımından benzer olmakla beraber, NK1 hücreleri hücre yüzey CD95 (Fas) antojenini NK2 hücrelerinden daha yüksek oranda exprése ederler ve antijen veya kimyasal indükli apoptoz ise daha duyarlılardır (6, 7). NK hücreleri; T hücre reseptörü (THR), immünoglobulin (Ig) veya CD3 moleküllü exprése etmelerine karşılık, hücre yüzeyinde “noral hücre yapısı molekülü-1” (CD56) expresyonu ile karakterizedir. CD56 expresyonunun özgül fonksiyonu tanımlanmamış olmakla birlikte, NK hücreleri CD56 expresyonunun yoğunluğu bağlı olarak "CD56bright" ve "CD56dim" olmak üzere iki ana gruba ayrılmaktadır.

Yükşek oranda Fc reseptörü CD16 ve perforin exprése eden CD16+CD56+ NK hücreleri "olgunsuz" NK hücreleri olup, total periferik kan NK hücrelerinin yaklaşık %90’ını oluşturultanlardır (4, 7). Bu hücreler uyarma bağlı olarak değişik miktarlarda IFN-γ sekrete edebilen ve hedef hücreleri etkili şekilde öldürebilirler (8). Enflamasyonu periferik bölgeler için “homing marker”lar (yerleşme belirteci) taşırlar ve sítotoksitom etkili perforin içerirler. Kazandaki total NK hücrelerinin küçüklük bir bölümü (5-10) ise CD16-CD56+ "olgunsuz" NK hücreleri oluşturmaktadır. Düşük seviyede perforin ve CD16 exprése eden CD56+ NK hücreleri uyarmış takiben yüksek miktarlarda IFN-γ ve TNF-α salgularlar. Bu fonksiyonlarda CD56soluk NK hücrelerine göre üstün olmakla birlikte, yalnızca uzun süreli uyarmadan sonra sitotoksik aktivite gelişirebilmektedirler (4, 9). Yüksek seviyede sitokin sekresyonundan dolayı CD56parlk NK hücrelerinin enfamasyondan sorumlu veya regülatör etkili hücreler olduklarını ileri sürülmektedir. Bu olsunlayanmıNK hücreleri sekonder lenfoid dokularda (10) ve enfamasyon alanlarında yüksek oranda bulunurlar (11).

NK hücrelerinin pek çok hastalıklara ilişkili olduğu görülen çalışmalar bulunmaktadır. İlgili hastalık modeline göre NK hücrelerinin koruyucu ya da hastalık ilerletici rolleri bulunabilmektedir. NK hücrelerinin multipl sklerosis hastalığı remisyonunda etkili olabileceğini öne sürülmektedir. Sistemik lupus eritematosus (SLE) hastalığında NK hücrelerinin sayısalcı azlığı nedeniyle enfeksiyonlara yakınlığında neden olduğu ileri sürülmektedir. Myastenia gravis hastalığınde ise NK hücrelerinin otoreaktiv T ve B hücreleriyle etkileşim ile patogene dönüşa dansında rolleri olabileceğini öne sürülmektedir. NK eksikliğinin viral hastalıklar ve kansere yakınlığıla ilişkili olabileceğini bildirilmektedir (12). Yine allerjik hastalıklarla NK katılmının incelenen çalışmalar ise NK hücrelerinin immün regüläsyonu katıklar allerjik özgü yanıtlan baskılan bir alt grubunu ortaya çıkarmaktır (13).

Pek çok hastalıka iliştirli olan NK hücre çalışmalarının bazıları saf hücreleri gerektirmekte, bu amaça yönelik farklı yöntemler bulunmaktadır. Bunlar, akım sitometrik ayrırm yöntemi olan floresan iliştirli hücre ayrırmı (FACS) ve manyetik aktive hücre ayrırmı (MACS)’dir. Bu çalışmada, yaygın kullanılan bir izolasyon kitinin saf hücre elde etme başarısı araştırılmıştır.

GEREÇ ve YÖNTEM
Çalışma Grubu
Çalışmaya İstanbul Üniversitesi İstanbul Tip Fakültesi Göz Hastalıkları Kliniği’ne takip edilen dokuz Beauqet hastası, etik kurulu gönülü onam formlarını doldurmalanların ardından dahil edilmiştir. Bu hastalar, üvet atıcı geçirdikleri anda çalışmaya dahil edilmiş, remisyon giderliklerinde ise tekrar kan vermeleridir. Ayrıca benzer yaş ve cinsiyet dağılımina sahip dokuz sağlıklı kontrol de çalışmaya katılmışlardır.

Periferik kan mononükleer hücre izolasyonu

NK hücre izolasyonu
PKMH-NK hücreleri, steril koşullarda manyetik hücre ayrırm sistemleri (MACS, Miltenyi Biotec, Almanya) ile izole edilmiştir. Bu sistemde NK hücre izolasyon kiti (MACS, Miltenyi Biotec, Almanya) kullanılarak T ve B lenfositler, monositler, bazofiller, dendritik hücreler ve diğer myeloid hücrelerin PKMH’den negatif seleksiyonu ile ayrılırılmıştır. 10^7/ml PKMH’ye 20µl Reaktan A (CD3, CD4, CD19, CD33) monoklonal antikor koytelyi ve 80µl NK tamponu (%0.5 Bovine Serum Albumin, 2mM EDTA içeren PBS, pH:7.2) eklenip +4°C de 30 dakika inkübe edilmiştir. Inkübasyonun ardından hücreler NK tamponu ile 2000 rpm’de 5 dakika yıkanıp süpermanat uzaklaştırılmış, pellet üzerine 107/ml hücreye 20µl Reaktan B (anti-manyetik mikrobeadler) ve 80µl NK tamponu eklenerek +4°C de 30 dakika inkübe edilmiştir. Inkübasyonu takiben hücreler NK tamponu ile 2000 rpm’de 5 dakika sandrifüj edilmiş, süpermanat uzaklaştırılmış pettel 1ml NK tamponu ile resüspanse edilerek manyetik ayrırm aşamasına hazırlanmıştır. Manyetik separasyon için Midi MACS, ayrırm kolonu olarak LS-MACS kolonu kullanılmıştır. Hücre süpsanisiyonu, önceden NK tamponu ile slatılmış olan MACS kolonuna uygulanmıştır. NK hücreleri negatif seleksiyonla, depleşyonu yapılan PKMH’ler ise pozitif seleksiyonla ayrıldıktan sonra hücre sayımı yapılmış, hücreler bir sonraki aşamaya kadar RPMI-1640’lı meydumda muhafaza edilmiştir. NK hücre süpsanisiyonu, 2000 rpm’de 5 dakika sandrifüj edildikten sonra süpermanat uzaklaştırılmış ve pellet üzerine 1ml RPMI-1640 eklenecek resüspanse edilmiştir.

NK hücre saflığının tayini
İzole edilmiş NK Hücre süpsanisiyonu CD3FITC/CD19PE ve CD3FITC/16PE 56PE monoklonal antikorları (Becton Dickinson, Amerika) ile boyanarak akan hücre diğerler cihazında değerlendirilmiştir. Bu amaçla 2x10^5/ml NK hücre süpsanisiyonu anti-CD3FITC/CD19PE, anti-CD3FITC/16PE 56PE ve anti-CD45FITC/14PE ile işaretlenip 30 dakika oda ısıtında inkübasyonun ardından akan hücre ölçer cihazında değerlendirilmiştir (Şekil 1).

Şekil 1: Örnek bir saflık çiztis. Saflaştırma sonrası CD45/CD14, CD3/CD19 ve CD3/CD16 CD56 yüzey beşirleri monoklonal antikorlar ile işaretlendiğinde %96 saflikta NK topluluğu gözlenmektedir.
BULGULAR

Çalışmaya katılan tüm hasta ve sağlıklı kontrollerde NK saflığı değerlendirilmiştir. Hastaların atak dönemlerinde (94,97 ± 4,58), remisyon dönemlerinde (95,01 ± 4,33) ve sağlıklı kontrollerde (97,80 ± 0,99) belirlenen saflık değerleri yüksektr (Şekil 2A). Gruplar arasında saflık değerleri açısından istatistiksel fark gözlenmemiştir (Wilcoxon testi ve Mann-Whitney U testi ile). Kolmogorov-Smirnov testi ile grup dağılımlarını incelediğinde atak (p=0,037), remisyon (p=0,034) ve kontrol grubunda (p=0,031) bir çeyrek saflık değerlerinin anlamlı düzeyde birbirinden farklı olduklarını görülmektedir. (Şekil 2B). Şekil incelediğinde bir çeyrek saflık değerlerinin birbirinden farklı olduğu, ancak atak ve remisyon değerleri arasında paralellik olduğu dikkat çekmektedir.

Atak ve remisyon grupları arasındaki uyum değerlendirildiğinde ise gruplar arasında kuvvetli korelasyon göstermiştir (r=0,958, Pearson korelasyon testi, Şekil 3). Bu değerler atak- sağlıklı grupları arasında (r=0,665), remisyon- sağlıklı grupları arasında ise (r=0,457) düzeyinde kalmıştır.

Şekil 3: Behçet hastalarının atak ve remisyon dönemlerinin birbirleriyle uyumunu inceleyen korelasyon grafiği. (Pearson Korelasyon testi, r=0,958)

Şekil 2: Atak ve remisyon dönemindeki Behçet hastaları ve sağlıklı kontrollere ait saflık çıktılar. (A) Behçet hastalarının atak ve remisyon NK saflığı yüzde ortalama değerlerine benzer bulunmuştur (Grup ortalama ± standart sapma değerleri gösterilmiştir, n=9). (B) Behçet hastalarının atak ve remisyon dönemlerindeki saflık değerleri gösterilmiştir. Bireysel saflık değerleri farklı olmakla beraber bireylerin atak-remisyon sonuçları birbirleriyle uyumludur.
TARTIŞMA

Hücre saflaştırması için yöntemler günden güne gelişmektedir. En yaygın kullanılan iki yöntem FACS ve MACS’tür. Bu iki yöntemin saflaştırmaya başarısını ve araştırmalı islemi sonrası hücre canlılık ve fonksiyonel kapasite değişimlerini incelenen çalışmalar farklı sonuçlar bildirmiştirler. Yapılan çalışmalarla, Treg ayrımı için MACS ile FACS yöntemleri karşılaştırılmış, hücre saflığı veya canlılığında çalışmaların etkileyecek düzeyde fark olmadığını ancak flow sitemetrik yöntemin saflık ve viyabilite konularında daha avantajlı olduğu bildirilmiştir (18). Fare mezenkimal kök hücre saflaştırılmasıyla ilgili bir başka çalışmada ise FACS ile ayırının daha saf ancak viabilitesinin daha düşük olduğu gösterilmiştir, ayrıca MACS ile ayırında hücre aktivitesi üzerine etkinin daha az olması manyetik ayırının avantajını ortaya koymuştur (19).

KAYNAKLAR:

