STREPTOCOCCUS MUTANS'IN SAKKAROZLU ORTAMDA TİTANYUM YÜZĘYİNİ ADHEZYONUNUN IN VITRO İNCELENMESİ

Ayfer Kaynar*, Güven Külekçi**

Yayın kararına teşvik tarihi: 31.3.1993

ÖZET

Anahtar sözcükler: Titanyum, adhezyon, Streptococcus mutans,

ABSTRACT

ADHERENCE OF STREPTOCOCCUS MUTANS TO TITANIUM SURFACES: IN VITRO

The adherence of Streptococcus mutans to titanium surfaces was studied in an in vitro model using ATCC#13419 strain of the bacteria incubated in %5 sucrose tryptic soy broth Mean values of CFU was 1.42x10¹. Thus, adhesion of the S. mutans occurred via sucrose to Ti without saliva. It was also shown that Ti has no antibacterial effect on S. mutans species.

Key words: Titanium, adhesion, Streptococcus mutans.

GİRİŞ

Dental implantların onde gelen başarısızlık nedenlerinden biri, yüzeylerinde birikten bakteri plaga bağlı gelişen infeksiyondur. Infeksiyon, implant desteklerin dokulara yuvarma neden olur (17). Kaynak olabilecek floridağı öncü mikroorganizmalarından alınan plak, temelde bakterilerin katı yüzeylerde adhe- zyon (yapışma) özelliğine bağlı olarak oluşur. Bakteri hücrenin herhangi bir yüzey ya da dokudaki kolonizasyon hücrenin adhezyon kapasitesine ilgili olmakla beraber, adhezyonun gerçekleştiği yüzeyin moleküler yapısı, hidrofilik veya hidrofobik oluşu, serbest yüzey enerjisi, yüzey gerilimi gibi parametrelerle, ayrıca bakteri duvarı ile sıkışan yüzey arasındaki alan (interface) doldurulan oksit tabakası ve protein filmin yapısı ile de yakından ilgilidir (1).

Adhezyon fenomeni bakteri hücre-yüze-yi yöndenden incelendiğinde, herhangi bir yüzeye kolonizasyonun aşağıdaki faktörlerden etkilediği görürlür:

1) Bakteri ile yüzey arasında stereookyamal bir etki- leşimin olması (7)
2) Bakteriler arası aggregasyon görülmesi (15)
3) Kommensal ilişki (16)
4) Antagonist etkileşim (20)
5) Tükürükteki spesifik ve nonspesifik immunolojik savunma (14)
6) Selektil bir büyüme (27).

* Dr. İ. Ü. Diş Hek. Fak. Ağır, Diş, Çene Hastalıkları ve Cerrahi Anabilim Dalı
** Doç. Dr. İ. Ü. Diş Hek. Fak. Mikrobiyoloji Bilim Dalı
GEREC VE YONTEM

Deneyde, safti parçasından 1,2x0,95 cm. boyutunda kesilen 8 günlük yüzey kullanıldı. Bu yüzeyler deyיני tüber (1,5 cm. çapında ve 16 cm. yüksekliğinde) içinde asılı kalımalari sağlamak amacıyla ortodontik teller üzerine, birbirinden yaklaştığ 2 cm. aralıklarla oluşturuldu -toksik etkisi olmayan- 404 yapıtırılmıştır.

McCabe ve McDummer'e göre (4) vitro bakteri plazmin hazırlanım için ATCC 13419 numaralı Streptococcus mutans suşu önceliğle %5 sakkarovoz katılmısı triptik sohbuıyon (TBS) besiyerinde 37°C de 24 saat üretilti. 5 gün süreyle yeni besiyerine transfer edilerek sakkarovoz ortama alşıtıldı. Edeilde saft kültürünün 1 ml'si içinde 15 ml. %5 sakkarovoz TBS bulunan deyitim bürünelerde ekildi (4). Her deyimi tüpüne iki Ti yüzeyi taşıyan bir ortodontik tel yerleştirilerek 24 saat 37°Cde inkübe edildi. Inkübasyon işlemi aynı şartlar altında, 5 gün süreyle, 5 yeni besiyerinde tekrarlandı. Başını küçüklen bürünede deyime kullanlan yüzeylerden biri, bakteri plazmin ve kuru ağrılığını saptamamış; diğer, plak oluşumu derecesi ve koloni sayımı için kullanıldı. Plak oluşum derecesi Ti yüzeyi üzerinde görülen koloni sayısına göre:

<table>
<thead>
<tr>
<th>Koloni Sayısı</th>
<th>Anlam</th>
<th>Dakika</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-30</td>
<td>Koloni yok</td>
<td>25'den az</td>
<td></td>
</tr>
<tr>
<td>3-60</td>
<td>Koloni sayısı</td>
<td>25-50</td>
<td></td>
</tr>
<tr>
<td>60-120</td>
<td>Koloni sayısı</td>
<td>50-75</td>
<td></td>
</tr>
<tr>
<td>120-200</td>
<td>Koloni sayısı</td>
<td>75-100</td>
<td></td>
</tr>
<tr>
<td>200-300</td>
<td>Koloni sayısı</td>
<td>100-125</td>
<td></td>
</tr>
<tr>
<td>300-400</td>
<td>Koloni sayısı</td>
<td>125'den fazla</td>
<td></td>
</tr>
</tbody>
</table>

Her bir yüzey üzerinde oluşan plazmin yaş ve kuru ağrılığını saptamak için, steril bir bastırıcu ucu ile kalırdı olan tüm birikintiler öncelikle daralması alınmayı lamellere yerleştirilerek ve tertildi. Lameller daha sonra pasör firında 60°C'de 5 dak. bekletildikten sonra ikinci kez tertildi. Bulunan değerlerin lamellerin çıkarıldığı kartellere plazmin yan ve kuru ağrılıkları bulunmuş olduğu.

Koloni sayımı için, yüzeyden elle edilen birikindi ayrı ayrı 4,5 ml. %0,85 NaCl çözeltisinde sıçraniem edildi. Elde edilen sıçrulsonların 0,1 ml'si %5 koyun kanlı jelöz besiyerine yanyla ve %10 CO₂ İ ortamda 37°Cde 24 saat inkübe edildi. Bu süre sonunda oluşan koloniler sayıldı. Bakteri sayısı (cfu)= Koloni sayısı/Sulandırma oranı x İnkulum miktarı ile elle edildi.

Ti metalinin S. mutans üzerine antibakteriyel etkisi agar diffüzyon deneyi ile yapıldı (11).

BULGULAR

Bakteri adhezyonunun denendiği toplam 8 titanium (Ti) yüzeyde birikeni bakteri plazmin ortalamaya yaş ve kuru ağrılıkları, cfu değeri ve derecesi tablo 1'de gösterilmiştir.

<table>
<thead>
<tr>
<th>ADF</th>
<th>Yağ</th>
<th>Ağı</th>
<th>Kuru Ağı</th>
<th>CFU/mm²</th>
<th>Derecesi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,14</td>
<td>5,1</td>
<td>3</td>
<td>1,42x10⁷</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Agar diffüzyon deneyine göre, Ti metalinin S. mutans üzerine antibakteriyel etkisi olmalıdır görülmüşdür.

TARTIŞMA

pişir. Böylece sert \(\alpha-1-3\) glukanlar ve yüzeye adsorbe olan GTF arastıdaki etkileşim S. mutans'ın sakkarozba bağlı özel adhezyonuna neden olur (22). Glukanlardan insolubil olan mutan, bilinen en kuvvetli biyolojik yapışkındır (24).

Çalışmamızda S. mutans'ın in vitro koşullarda Ti yüzeylerle kolonize olduğunu saptadık. Elede edilen değerlere Pratt-Terpstra ve arkadaşlarının tükürükle kaplanmışmine yüzeylerdeki S. mutans adhezyonu nüfusunun arttırdığı, amorf ti ve nüfusunın katkısında sızأغل advisı etkileri adhezyonunun gerçekleştiği, sızı edilen bakterinin adhezyon yüzeyindeki için yüzeye adhezyonunun ablandığını fark olmasının bildirmişti. Çalışmamızda Ti yüzeylerde elede edilen CFU değerleri bildirilen sonuçlar uyguluk göstermekte ve S. mutans adhezyonunun, yüzey atomik doygunluk kapasitesi, serbest yüzey enerjisi, elektrostatik alan, gibi fiziksel parametreler yanda, yukarıda belirtildiği gibi sakkarozba bağlı ve S. mutans'a özel etkileşim sonucu (9) meydana geldiğini doğrulamaktadır.

Ti metalinin antimikrobidal etkisi de incelenmiş ve bu konuda farklı görüşler ıleri sürülmüş (23). Bu nedenle ve arkadaşları (25) saf titanyumun bakteriostatik etkisi olduğu bildirmelerine rağmen bu etkinin metal alıtı bazı korozyon ürünlerine bağlı olarak meydana geldiğini ve Ti gibi inert bir metalin, bulunduğu ortama ıyon serbestleyerek bakteriostatik bir etki göstermesinin ise beklenemeyeceği düşünülmuştur (21). El gibi ve Simonson'un çalışmalarında ise, Streptococcus sanguis, Peptostreptococcus anaerobius, Veiellina sp., Neisseria mucosa, Lactobacillus sp., Actinomyces israelii, Fusobacterium nucleatum türleri üzerinde Ti metalinin kolonizasyonu stimül edici bir etkisi olmadiği gibi, bakteriostatik bir etkisini de olmadiği bildirilmiştir (5). Bu sonuçlara paralellik gös-

terecek biçimde, çalışmamızda da, S. mutans'ın bakteriostatik bir etkisi olmadığını agar diffsion deneyinde, Ti yüzey çevresinde inhibisyonda zorunun görülmemesi ile doğrulamıştır.

Çalışmada kullanılan yüzeyler düzgün cilali yüzeyler olmakla birlikte kesimleri sırasında oluşturğu düşüntülen çizgiler içermekteydi. Ti yüzeylerdeki 10-100\(\mu\) daki düzensizliklerin elektro-statik alanı etkilediği bildirilmiştir (1). Kullandığımız Ti yüzeylerin püttürlü olan kısımlarıda görecek olan fazla sayılabilecek bakteri tutunması, elektriksel alan değişikliklerinin S. mutans'ın adhezyonunda etkili olduğunu göstermektedir.

Çalışmamızda in vitro koşullarda S. mutans'ın Ti yüzeyine adhezyonu gösterilmesi olmakla birlikte, tüketüğün bulunduğu in vivo modellerde söz konusu yapanının minimal düzeyde olduğunu bildirilmiştir (10). Adhezyonunda meydana gelen bu farklılık, tüketüğün koruyucu etkisini vurgulamaktadır (15, 26).

Ti metalinin bakteriostatik ve kolonizasyonu stimül edici etkilerinin olaması, metalin inert kalitesinin bir sonucu olarak ortaya çıktığını düşünülmektedir.

Bu çalışma, Ti yüzeyinde protein bir ort])** olamasyon (pelikül vulgunda) S. mutans kolonizasyonunun fiziksel kuvvetler ve sakkarozun varlığı ile sağlandığı göstermiştir.

Bir Ti implant çivisinin ağız ortamındaki kısmın önci bakterilerin kolonizasyonunun olabildiğini de etkilenmesini sağlama amacıyla ağız hijyenine ve implant metalinin temizliği üzerine gosterilmiştir. Ancak bunu yaparken metalin herhangi bir şekilde çizilmiş olmalyan ve yerinecek yöntemler kullanılmaktadır.
KAYNAKLAR

10- Imbedor M. Factors That Influence the Attachment of Colonizing Bacteria to Ti Surfaces. Thesis. 1988, Colombia Univ.

Yazışma adresi
Doç. Dr. Ayfer Kaynar
İ.U. Diş Hek. Fak.
Ağız, Diş, Çene Hastalıkları ve Cerrahisi Anabilim Dalı
34390 Çapa -İstanbul