SİLİKON ESASLI ÖLÇÜ MADDELERİNİN
ZAMANA BAĞLI ÇİZGİSEL BOYUTSAL
DEĞİŞİMİ

Ömer Kutay** Tayfun Bilgin*** Olcay Şakar****

Yayın tarihi: 15.1.1993

ÖZET
Bu çalışmadada ölçü kondansasyon ve biri ilave polimerizasyon silikonu olan ölçü maddeleminin zamana bağlı çizgisel boyutsal değişimi serbest halde ve kaşık akırdığına yapılmas yapısı durumda iken incelenmiştir. Deney örnekleri ADA'nın 19 nolu spesifikasyonuna uygun bir pirinç kalıpta hazırlanmış ve hareketli bir Gaeter mikroskopu ile 10 dak. 1 saat(s), 2, 24 s, 48 s ve 1 hafta zaman dilimlerinde ölçümleri yapılmıştır. Zamana bağlı verilerin değerlendirilmesi için eğlendirilmiş diye uygulanmış, ölçü maddeleri ise Tukey testi ile karşılaştırılmıştır (p<0.05). Kondansasyon silikonları standart bir pirinç kalıp boyustralarına kıyasla, tüm gruplarda anlamlı olarak zamana bağlı boyutsal katılması göstermiştir. Materyaller karışıtırıldığında kondansasyon silikonları arasında fark saptanmamış, ancak kondansasyon ve ilave silikonlar farklı bulunmuştur. Sonuç olarak kondansasyon silikonlarının ölçü almayı taki- ben hemen dökümleri gerektiği anlaşılmıştır. İlave polimerizasyon silikonu bir haftalık zaman süresince kabul edilebilir düzeyde boyutsal değişşim göstermiştir.

Anahtar sözcükler: Silikon ölçü maddeleri, boyutsal değişşim.

TIME-DEPENDENT DIMENSIONAL
VARIABILITY OF SILICONE IMPRESSION
MATERIALS

ABSTRACT
This investigation examined the time-dependent linear dimensional variability of three condensation and one addition silicone impression materials prepared as free samples and as bonded to an acrylic tray material. Samples were prepared according to a die described in ADA specification no. 19. The dimensional changes were evaluated by using an optical traveling microscope at 10 min, 1 hour(1 h), 2 h, 24 h, 48 h, and 1 week time intervals. The time-dependent changes were compared with the dimensions of a standard brass die using a paired t test and the difference between the impression materials analyzed using Tukey’s range test, all at p<0.05 level. The time-dependent shrinkage of condensation silicones showed significance in all test groups. However, condensation silicones showed no significance within each other, while significance exist between addition and condensation silicones. It was concluded that condensation silicones should be poured as soon as possible. Addition silicone displayed acceptable time-dependent stability even up to one week.

Key words: Silicone impression materials, dimensional stability.

GİRİŞ
Günümüzde elastomer ölçü maddeleri olarak kullanılan materyaller; polisülfiton, polieter esaslı maddeler, kondansasyon ve ilave polimerizasyon silikonları olarak dört gruba ayrılmaktadır (13). Literatürde bu materyallerin boyutsal stabilitele- rini incelenen pek çok araştırma yapılmıştır (1, 2, 5, 7, 8, 9, 10, 11, 12, 14). Genellikle bu araştırmalarda ilave polimerizasyon silikonlarının kondansasyon silikonla- rından daha az boyutsal değişşim gösterdiği bildirilmektedir (2, 7, 8, 9, 13). Ancak aynı türden silikon ölçü maddelerinin kullanına sunulmuş değişşim isimler alt-undaki ürünleri boyutsal değişşim bakımından birbirinden farklı olarak bulundukları (14, 7). Ölçü maddelerinin zamana bağlı çizgisel boyutsal stabilitesi incelenmiş-

** Doç.Dr. İ. Ü. Diş Hek. Fak. Prototik Diş Tedavisi Anabilim Dalı
*** Dr. İ. Ü. Diş Hek. Fak. Prototik Diş Tedavisi Anabilim Dalı
**** Arş. Grv. İ. Ü. Diş Hek. Fak. Prototik Diş Tedavisi Anabilim Dalı
tir. Ayrıca ölçü maddeleri Primo(*) isimli bir adeziv ile akrilik kaşık materyaline yapıştırmaya çalışılmış ve Primo'nun adezyon etkisinin boytosal stabiliteyi etkileyip etkilemediğini araştırılmıştır.

GEREÇ VE YÖNTEM

Araştırmanınında toplam dört ölçü maddesi kullanılmıştır. Bunlardan üçü kondansasyon biri ilave polimerizasyon silikonudur. Ticari isimleri ve firmaları (Tablo 1) de görülmektedir. Xantopren VL ve Thixoflex düşük, Xantopren Mukoza orta, Baysilex ise yüksek viskoziteye sahip ölçü maddeleridir.

Tablo 1. Kullanılan materyaller

<table>
<thead>
<tr>
<th>Ölçü Maddesi</th>
<th>Seri No.</th>
<th>Firma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xantopren VL</td>
<td>Kondansasyon silikonu</td>
<td>base 3496J aktiv. 3064J</td>
</tr>
<tr>
<td>Xantopren Mukoza</td>
<td>Kondansasyon silikonu</td>
<td>base 2030F aktiv. 3064J</td>
</tr>
<tr>
<td>Thixoflex</td>
<td>Kondansasyon silikonu</td>
<td>160993</td>
</tr>
<tr>
<td>Baysilex</td>
<td>İlave pol. silikonu</td>
<td>base 7115R aktiv. 7099R</td>
</tr>
</tbody>
</table>

* Aktiv: Aktif
 * Pol: Polimerizasyon

Her bir ölçü maddesi için on tane olmak üzere toplam 40 adet deney örneği hazırlanmıştır. Örnekler iki gruba ayrılarak 20 tanesi serbest ölçü maddesi olarak hazırlanmış 20 tanesi ise akrilik reçineye yapıştırılmıştır (Resim 1).

Resim 1. Deney örnekleri

Deney örnekleri ADA’nın (American Dental Association) 19 numaralı spesifikasyonuna uygun standard bir piring kalıpta hazırlanmıştır (3) (Resim 2). Piring kalıp üzerinde 0.23 mm genişliğinde X, Y ve Z olarak isimlendirilmiş üç paralel çizgi bulunmaktadır. Çizgilerin boytusal stabilite ölçümleri "Y" çizgisi boyunca ve bu çizgilerle dik iki ayrı çizginin (A ve B) arasındaki mesafe "A" çizgininin dış kenarından "B" çizgininin dış kenarına ölçecek kaydedilmişdir. Standart kalıp üzerinde ölçülen mesafe 25.230 mm dir (Şekil 1).

Şekil 1. Standart piring kalıp boyutları

Ölçü maddeleri, firmaların örneği oranlarda, mümkün olduğu kadar homojen karstılarak piring kalıf üzerine oturan bir piring halka içerisinde 3 mm kalınıltık şekillendirilmişdir. Kalıp içerisinde ölçü maddesi konulduktan sonra üzerine bir jelatin ile be raber kaleına bir cam konularak bir britte sıkıştırılmıştır (Resim 3) ve bu esnada kalıp yüzeyi üzerindeki çizgiler silikon ölçü maddeleri tarafından kaydedilmişdir.

* Molloplast Regneri and Co. Karlsruhe, Germany.
Ölçü maddesi sertleşene kadar, ağız ortamına benzemesi amacıyla britte 32°C deki saf suda bekletilmiştir. Suda bekleme süresinin, tüm ölçü maddeleri için firmaların bildirdiği sertleşmesine sürresinden en az 2 dakika daha fazla olması sağlanmıştır. Böylece örneklerin kalıptan çıkartılmadan maksimum polimerizasyonları sağlanmaya çalışılmıştır.

Piring halka içerisindeki polimerize olmuş örnekler, aynı çapta bir metal disk ile itilerek deformasyona uğratılarak kalıptan çıkartılmışlardır. DeneySEL çalışmanın tamamı oda şartlarında yürütülmüştür. Örneklerde zamanıyla bağlı boyutsal değişimler 0.01 mm aralıklarla derecelendirilmiş bir Gaertner hareketli mikroskobuya iki kez ölçülenler, ölçümlerin ortalaması alınmıştır (Resim 4). Ölçümler 10 dakika, 1 saat, 2 saat, 24 saat, 48 saat ve 1 haftalık zaman dilimlerinde yapılmıştır.

Resim 3. Örneklerin kalıp içerisinde britte sıkıştırılarak hazırlanması

Akrilik kaideye yapıştırlıms örneklerin hazırlanması:

Çalışmamız içerisinde silikon ölçü maddelerinin otopolimerizan akrilik kaideye Primo ismini bir adeziv ile yapıştırmışın boyutsal değişimlerine etkisi ayrıca araştırılmıştır. Primo adeziv, silikon esaslı bir yumuşak astar maddesi olan Molloplast-B’nin prime-ridir ve kimyasal yapısının:

Y-Methacryloxypropyl trimethoxysilane

olduğu bildirilmektedir (15). Akrilik kaide olarak Meliodent * soğuk akrilik reçine kullanılmış ve 4 cm çapında ve 3 mm kalınlığında diskler hazırlanmıştır. Akrilik yüzeyleri önce 100 gridlik su zımparası ile pirüzdendirilmiş ve daha sonra Primo uygulanmıştır (Resim 5). Böylece ölçü maddelerinin akrilik reçine disklerine yapışması sağlanmaya çalışılmıştır. Geri kalan işlemler önceliği grup için anlatılan şekilde tamamlanmıştır.

Resim 5. Akrilik kaideye Primo adesiv sürümesi

BULGULAR

Zamanla bağlı boyutsal değişimlerin istatistiksel değerlendirilmesi için eşlendirilmiş dizi uygulanmış ve standart kalıp ölçüm değeri ile örnek grup ortalamaları karşılaştırılmıştır. Ölçü maddelerinin birbirlerine göre karşılaştırılması amacıyla 10 dakika ve 24 saatlik zaman dilimlerindeki boyutsal değişimler Tukey testi ile değerlendirilmiştir. Anlamlılık düzeyi 0.05 olarak belirlenmiştir.

Her bir gruptaki beş örneği ortlama ve standart sapmaları ile kalıptan sapan boyutsal değişim yüzdeleri Tablo II ve Tablo III de görülmektedir. Zamana bağlı boyutsal değişimler standart kalıp ile karşılaştırı-
rildiğında kondansasyon silikoları olan Xantopren VL, Xantopren Mukoza ve Thixoflex hem serbest halde iken hem de akrilik kaide ile birlikte kullanıldığı gruplarda anlamlı fark göstermiştir. İflave polimeri-zasyon silikonu Baysile ise her iki grupta da boyut-sal olarak bir hafta süre içerisinde anlamlı bir boyutsal değişim uğramamıştır. Ölçü maddelerinin zamana bağlı boyutsal değişimlerinin grafik olarak karşılaştı-rılması (Şekil 2 ve Şekil 3) de görülmektedir.

Tablo 2. Serbest haldeki ölçü maddelerinin zamana bağlı boyutsal değişimleri

<table>
<thead>
<tr>
<th>Materyal</th>
<th>10 dakika</th>
<th>1 saat</th>
<th>2 saat</th>
<th>24 saat</th>
<th>48 saat</th>
<th>1 hafta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xantopren VL</td>
<td>25.147</td>
<td>25.097</td>
<td>25.093</td>
<td>25.05</td>
<td>25.066</td>
<td>25.061</td>
</tr>
<tr>
<td></td>
<td>0.0327</td>
<td>0.0376</td>
<td>0.0371</td>
<td>0.0512</td>
<td>0.0445</td>
<td>0.0484</td>
</tr>
<tr>
<td></td>
<td>% 0.32</td>
<td>% 0.52</td>
<td>% 0.54</td>
<td>% 0.71</td>
<td>% 0.65</td>
<td>% 0.67</td>
</tr>
<tr>
<td></td>
<td>0.029</td>
<td>0.0089</td>
<td>0.0084</td>
<td>0.0037</td>
<td>0.0128</td>
<td>0.0092</td>
</tr>
<tr>
<td></td>
<td>% 0.29</td>
<td>% 0.42</td>
<td>% 0.45</td>
<td>% 0.58</td>
<td>% 0.57</td>
<td>% 0.70</td>
</tr>
<tr>
<td>Thixoflex</td>
<td>25.179</td>
<td>25.159</td>
<td>25.111</td>
<td>25.105</td>
<td>25.11</td>
<td>25.103</td>
</tr>
<tr>
<td></td>
<td>0.022</td>
<td>0.0222</td>
<td>0.0076</td>
<td>0.0152</td>
<td>0.0215</td>
<td>0.0195</td>
</tr>
<tr>
<td></td>
<td>% 0.19</td>
<td>% 0.28</td>
<td>% 0.47</td>
<td>% 0.49</td>
<td>% 0.47</td>
<td>% 0.50</td>
</tr>
<tr>
<td></td>
<td>0.006</td>
<td>0.007</td>
<td>0.0112</td>
<td>0.0154</td>
<td>0.0118</td>
<td>0.0045</td>
</tr>
<tr>
<td></td>
<td>% 0.02</td>
<td>% 0.03</td>
<td>% 0.07</td>
<td>% 0.08</td>
<td>% 0.06</td>
<td>% 0.03</td>
</tr>
</tbody>
</table>

Her ölçüm maddesi için gösterilmiş olan üç değer sırasıyla (X, SD ve standart kaide göre değişim yüzdesidir) n = 20

Tablo 3. Akrilik kaideye yapıştırmış ölçü maddelerinin zamana bağlı boyutsal değişimleri

<table>
<thead>
<tr>
<th>Materyal</th>
<th>10 dakika</th>
<th>1 saat</th>
<th>2 saat</th>
<th>24 saat</th>
<th>48 saat</th>
<th>1 hafta</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0052</td>
<td>0.0271</td>
<td>0.0302</td>
<td>0.051</td>
<td>0.0605</td>
<td>0.0602</td>
</tr>
<tr>
<td></td>
<td>% 0.20</td>
<td>% 0.39</td>
<td>% 0.43</td>
<td>% 0.66</td>
<td>% 0.66</td>
<td>% 0.70</td>
</tr>
<tr>
<td></td>
<td>0.0184</td>
<td>0.0225</td>
<td>0.0339</td>
<td>0.0323</td>
<td>0.0294</td>
<td>0.0458</td>
</tr>
<tr>
<td></td>
<td>% 0.21</td>
<td>% 0.25</td>
<td>% 0.34</td>
<td>% 0.44</td>
<td>% 0.37</td>
<td>% 0.45</td>
</tr>
<tr>
<td></td>
<td>0.0178</td>
<td>0.0221</td>
<td>151</td>
<td>0.0052</td>
<td>0.0141</td>
<td>0.0137</td>
</tr>
<tr>
<td></td>
<td>% 0.19</td>
<td>% 0.27</td>
<td>% 0.33</td>
<td>% 0.43</td>
<td>% 0.37</td>
<td>% 0.39</td>
</tr>
<tr>
<td></td>
<td>0.0157</td>
<td>0.0147</td>
<td>0.0148</td>
<td>0.0148</td>
<td>0.0234</td>
<td>0.0222</td>
</tr>
<tr>
<td></td>
<td>% 0.05</td>
<td>% 0.06</td>
<td>% 0.06</td>
<td>% 0.07</td>
<td>% 0.09</td>
<td>% 0.09</td>
</tr>
</tbody>
</table>

Her ölçüm maddesi için gösterilmiş olan üç değer sırasıyla (X, SD ve standart kaide göre değişim yüzdesidir) n = 20
Dört ölçü maddesinin 10 dakika ve 4 saatlik zaman dilimlerindeki boyutsal değişimlerinin Tukey testi ile analizi sonucunda Baysilexin kondansasyon silikonlarına göre farklı anlamlı bulunmuştur (Tablo IV). Kondansasyon silikonları içerisinde en fazla boyutsal değişimi Xantopren VL göstermiş, ancak her iki grupta Xantopren VL ve Xantopren Mukoza ve Thixoflex örnekleri arasında istatistiksel olarak fark saptanmamıştır. Akrilik kaideye bağlı gruplarda Xantopren M ve Thixoflex'in boyutsal değişimleri grafik olarak hemen hemen aynı çizgide seyretmiştir (Şekil 3).

10 dakika ve 24 saatlik zaman dilimlerinde akrilik kaideye Primo ile yapıtılmış olan dört ölçü maddesinin boyutsal stabiliteleri, serbest haldeki durumlarıyla karşılaştırıldığında istatistiksel olarak farklı bulunmamıştır (Tablo IV).

TARTIŞMA

Ölçü maddelerinin boyutsal stabilitelerini korumaları esken den beri dişhekilerinin isteği olmuştur. Ancak tam olarak boyutsal stabiliteye sahip bir ölçü maddesi henüz geliştirilememiştir.

Elastomer ölçü maddelerinin boyutsal değişim sebeplerinden bir tanesinin çapraz bağ reaksiyonları sırasında meydana gelen hiç şubesiz bütün ölçü maddelerinin yapısında meydana gelmektedir, ancak bunun klinik öneminden bahsedilmemektedir. Diğer tarafından kondansasyon silikonlarında olduğu gibi gibi materyelin yapısında polimerizasyon reaksiyonunu sonucunda alkol gibi yan ürünlerin ağıza çıkması zincir reaksiyonunun da daha küçük "mer" lemin tekrarlanmasına ve daha fazla kontraksiyon neden olmaktadır. Ilave polimerizasyon silikonların reaksiyonlarında kondansasyon silikonlarında olduğu gibi düşük molleküllü ağırlıklı yan ürünler ağıza çıkmamaktadır (12).

Sertliği veya elastikliyet modülü faza olan elastomerlerde polimerizasyon sırasında boyutsal değişim daha az olduğu söylenebilir (1). Bu durum yüksek viskoziteye sahip olan elastomerler için de aynı olarak kabul edilebilir. Bunun nedeni viskozitenin veya moleküller arasında çekim kuvvetinin, elastiklik modülü ile doğru orantılı olmasıdır. Çalışmamızda kullanılmışım aynı tür ölçü matıllerinde Xantopren VL ve Thixoflex dışınd, Xantopren Mukoza ofta viskoziteye sahip olup viskoziteleye boyutsal değişimler arasında belirli bir ilki kurtarmamıştır.

Ölçü matıllerinin akrilik kaş materyaline Primo ile yapıtırlnasıyla boyutsal değişimde fark saptanmamıştır. Bu durum kullanılmada dezey Primo'nun ilave ve konsansasyon silikonlar için tam bir adezyon sağlayamadığı düşünülmüştür. Ölçü matıllerinin boyutsal stabilitesini bir dezey ile akrilik kaş materyaline yapıştırarak inceleyen Ciesco ve arkadaşları(2) kullandıkları dezeyin boyutsal stabiliteyi etkilediğini Mansfield ve Wilson(11) ise etki-lemayı bildirmiştir. Hogans ve Agar ise her materyal için firmaların önerdiği özel adezyonları kullanarak, serbest ve akrilik kaş materyaline bağlı örneklerde farklı boyutsal değişim meydana geldiğini bulmuştur. Primo'nun kullanılamayacağı, Primo'nun bileşimindeki silan silikon olgun madde ile metakril grubunun ise akrilik reçine ile bağ yaparak akrilik bir kaideye silikon ölçü matıllerinin adezyon sağlayabilmese deydi.

Gözlemlerimizde göre bazı örneklerde Primo, Baysilex ile temas ettiği yüzeyde polimerizasyonunuzuzun süre gecektirmiştir. Konsansasyon silikonlarında ise önce adezyon sağlanmış ancak büyük bir olasılıkla kontraksiyona bağlı olarak ilerleyen sürelerde bazı örneklerde akrilikten ayrılmaya başlayacaktır.

SONUÇLAR

1- Konsansasyon silikonlarının ölçü almayı takiben hemen dökümleri gerekmemektedir.

2- İlave polimerizasyon silikon bir hafta süre içinde önemli miktarda çizgisel boyutsal değişim göstermemektedir.

3- Baysilex, konsansasyon silikonları olan Xantopren VL, Xantopren Mukoza ve Thixoflex'den alınabilir olarak az boyutsal değişim ugrasmıştır.

4- Konsansasyon silikonları 10. dakika ve 24. saatte birbirlerinden istatistiksel olarak farklı boyutsal değişim göstermemektedir.

5- Primo'nun adezyon etkisi boyutsal değişimde farklı meydana gelmemiştir.
KAYNAKLAR

Yazıma adresi

Yrd.Doç.Dr. Ömer Kutay
İ.Ü. Diş Hekimliği Fakültesi
Prostetik Diş Ted. Ana Bilim Dalı
34390 Çapa-Istanbul